
1. Ramsey’s Theorem for Pairs and
Weaker Principles

In layman’s term, Ramsey’s Theorem for pairs
can be stated as follows: In a party of infinitely
many participants, we can always find an infinite
group of people such that all of them knew each
other or all of them are mutual strangers. The pre-
cise statement of the general version of Ramsey’s
Theorem says:

Theorem 1.1 (Ramsey [12]). Let N denote the set
of natural numbers. Any f : [N]n → {0, 1, . . . , k − 1}
has an infinite homogeneous set H ⊆ N, namely, f
is constant on [H]n; here [X]n stands for the set of all
n-element subsets of X.

If we think of f as a k-colouring of the n-
element subsets of natural numbers, then there is
an infinite set H whose n-element subsets have the
same colour. It is customary to think of statements
of the form “for all f there exists H...” as a game:
“the opponent poses a problem (e.g. a colouring
scheme) and we are to provide a solution (e.g. the
infinite homogeneous set)”.

The version above is denoted by RTn
k . Our

main focus is on RT2
2 — Ramsey’s Theorem for

Pairs. In the example given above, we “colour”
a pair of people “blue” if they knew each other,
and colour them “red” otherwise. Then the homo-
geneous set H is the group that with the desired
property. We now give a proof of RT2

2. Let f be
a colouring of pairs, say by red and blue. We
first find an infinite subset C of natural numbers
on which f is “stable”, i.e. for all x ∈ C, the
limit limy∈C f (x, y) exists. We call such a set C
cohesive for f . Next we consider the following two
sets: DR

= {x ∈ C : x is “eventually red”} and
DB
= {x ∈ C : x is “eventually blue”}. One of

them must be infinite, say it is DR. Now it is fairly
easy to select the elements of a red homogeneous
set from DR: Let a0 be the least element in DR.
Suppose that we have selected a0 < a1 < · · · < ak,
let ak+1 be the first element larger than ak such that

(ai, ak+1) is coloured red for all i ≤ k. The existence
of ak+1 is guaranteed by the stability.

We extract two combinatorial principles out of
the proof: Let R be an infinite subset of natural
numbers and Rs = {t|〈s, t〉 is in R} where 〈s, t〉
stands for the Gödel coding of pairs. A set G is
said to be R-cohesive if for all s, either G ∩ Rs is
finite or G∩(N\Rs) is finite. The cohesive principle
COH states that for every R, there is an infinite G
that is R-cohesive. The other principle is called the
stable Ramsey’s Theorem for pairs, denoted by
SRT2

2 which states that every stable colouring of
pairs has a solution. The principles COH and SRT2

2

were studied by Cholak, Jockusch and Slaman [1],
where they showed

Theorem 1.2 (Cholak, Jockusch and Slaman).

RT2
2 = SRT2

2 + COH.

There are many other principles which are
corollaries of Ramsey’s Theorem for pairs. For
instance, the principle ADS of ascending or de-
scending sequence states that every infinite lin-
early ordered set contains an infinite subsequence
that is either increasing or decreasing. The Chain
and Antichain Principle CAC states that every
infinite partially ordered set has an infinite chain
or antichain.

2. Introducing Reverse Mathematics

One of the main objectives of reverse mathematics
is to study the relative strength of mathematical
theorems. In this case, we are interested in the
relative strength of combinatorial principles, in
particular the principles related to Ramsey’s the-
orem. It turns out that the most interesting ones
are those implied by Ramsey’s theorem for pairs.
For example, it is natural to ask whether COH

or SRT2
2 is as strong as RT2

2, and whether ADS

implies RT2
2. To put it more generally, what are the

logical consequences and what is the strength of
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a combinatorial principle, for example, Ramsey’s
Theorem?

To answer these questions, one needs to bring
in tools from logic. For example, the answer may
depend on analysing the complexity of the homo-
geneous set H. Also, one needs logic to determine
if one principle P implies, or does not imply, the
principle Q. It is usually more challenging to show
that P does not imply Q. As we know from logic
that one way to demonstrate that P � Q is to
“make” P true and Q false. However, since these
combinatorial principles are all true theorems in
mathematics (provable within the standard sys-
tem of set theory), how can one make it false?

Thus we have to work in some weaker ax-
iomatic system Γ, and demonstrate that “Γ proves
P but not Q”. Usually, we will have a hierar-
chy of axiomatic systems Γ0 < Γ1 < . . . as our
benchmarks and their relative strength has been
established in a strictly increasing order so that Γi

is strictly weaker than Γj for i < j (as indicated by
the “<” symbol between the systems). Therefore,
to show that P does not prove Q, it suffices to
show that Γi proves P and on the other hand Q
proves Γj for some j > i. Notice that the last step
requires that we prove axiom Γj from a theorem
Q, which reverses the usual mathematical practice
of proving theorems from axioms. This is why
the term “reverse mathematics” is coined. The
standard reference book for reverse mathematics
is Simpson [14].

We now introduce two most commonly used
axiom systems in the study of reverse mathemat-
ics, namely the subsystems of first- and second-
order arithmetic. Recall that the language of first
order Peano Arithmetic consists of a constant
symbol 0, three function symbols S,+,× (where
S(x) = x+ 1 for any number x) and a binary pred-
icate <. Formulas over the language of arithmetic
naturally form a hierarchy by the number of alter-
nating blocks of quantifiers, giving us the usual
arithmetic hierarchy. Formulas with n alternating
blocks of quantifiers with the leading one exis-
tential (resp. universal) are called Σ0

n (resp. Π0
n).

The superscript 0 indicates that the formulas are
first-order. For example, (∀x, y, z > 2)[x2015

+y2015
�

z2015] is Π0
1 (here x2015 is a shorthand for the

product of 2015 copies of x); and the twin prime
conjecture is Π0

2. Also, given an axiom system,
the Δ0

n formulas are those having two equivalent
forms, one Σ0

n and Π0
n, provable within the system.

Let IΣ0
n denote the mathematical induction schema

for Σ0
n-formulas, and BΣ0

n denote the Bounding
Principle for Σ0

n-formulas. BΣ0
n says that every Σ0

n

definable function maps a finite set onto a finite
set. By a theorem of Kirby and Paris [9]

· · · ⇒ IΣ0
n+1 ⇒ BΣ0

n+1 ⇒ IΣ0
n ⇒ . . .

This gives us a set of benchmarks in first-order
arithmetic.

The other set of benchmarks is based on the
collection of subsystems of second-order arith-
metic which is used in reverse mathematics. In
second-order arithmetic, the variables and quanti-
fiers in a sentence can range over sets or relations.
For example, “every nonempty subset has a least
element” can be written as

(∀X)((∃x)(x∈X)→ (∃x)(∀y)(x∈X& y∈X→y≥x)).

Complexity can be defined similarly. For exam-
ple, the above sentence is Π1

1. Here we only list
three of the subsystems which are needed in the
sequel: RCA0 which contains Σ0

1-induction and Δ0
1-

comprehension: For any Δ0
1-formula ϕ, ∃X∀n(n ∈

X ↔ ϕ(n)); WKL0 which is RCA0 plus weak
König Lemma saying that every infinite binary
tree has an infinite path; and ACA0 which is RCA0

plus arithmetical comprehension. Their relative
strengths are known:

RCA0 < WKL0 < ACA0.

We also need the notion of models. A model
M of second-order arithmetic is a mathematical
structure (M, 0, S,+,×,<, X) where (M, 0, S,+,×,< )
is its first-order part and X ⊆ 2M is the second-
order part. The set variables are interpreted as
members of X. For example, if M is a model of
RCA0, then its second-order part X is closed under
Turing reducibility and Turing join. In short, we
have two measures of strength: the first-order
measure which depends on the strength of induc-
tion satisfied and the second-order measure which
is provided by the richness of set existence. With
the concept of hierarchies available, we can recast
the motivating questions as follow:

(1) Suppose the colouring function f is recur-
sive. What is the minimal syntactical com-
plexity of a solution?

(2) To which system in reverse mathematics
does Ramsey’s Theorem correspond? For ex-
ample, does RT2

2 imply ACA0?
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(3) What are the first-order consequences of
Ramsey’s Theorem? For example does RT2

2

imply IΣ0
n for n > 1?

(4) Does SRT2
2 imply RT2

2? More precisely, if a
model of RCA0 whose second-order part X
contains solutions for all stable colourings in
X, must X contain solutions for all colour-
ings in X?

3. Earlier Results

We now give a list of key results in the de-
velopment of the subject. Some of the early
studies were motivated by effective mathematics,
and presented here in the language of reverse
mathematics.

Theorem 3.1 (Jockusch [8]). Over RCA0,

ACA0 ⇔ RT3
2 ⇔ RTn

k

where n, k ≥ 3 and

ACA0 ⇒ RT2
2 and WKL0 � RT2

2.

Theorem 3.2 (Hirst [7]). Over RCA0,

SRT2
2 ⇒ BΣ2.

This sets a lower bound for the first-order
strength of SRT2

2 and hence RT2
2.

Theorem 3.3 (Seetapun and Slaman [13]). Over
RCA0,

RT2
2 � ACA0.

Seetapun’s proof made clever use of trees,
which leads to the Seetapun Conjecture:
RT2

2 ⇒ WKL0.
To determine an upper bound of first-order

strength, conservation results are often used.
One of the earliest conservation results was due
to Harrington, who showed that WKL0 is Π1

1-
conservative over RCA0, i.e. any Π1

1-statement that
is provable in WKL0 is already provable in RCA0.

Theorem 3.4 (Cholak, Jockusch and Slaman [1]).
RT2

2 is Π1
1-conservative over RCA0 + IΣ2.

Corollary 3.5 (Cholak, Jockusch and Slaman [1]).
Over RCA0,

RT2
2 � IΣ3.

4. Recent Results

Since the work of Cholak, Jockusch and Slaman,
the exact strength of RT2

2 became the central prob-
lem of study and a major focus of attention in
reverse mathematics, with many attempts made
at solving it. The extensive study created a new
paradigm for the field. For example, the collection
of subsystems (called the big five) widely used
before the turn of the century for benchmarking
the strength of a mathematical theorem was no
longer sufficient. In fact, for combinatorial prin-
ciples related to RT2

2, a linear ordering of mea-
sures to classify the strength of a system will not
work. Today the picture looks rather like a “zoo”.
Hirschfeldt and Shore [6] made further progress
on the exact strength of many important combi-
natorial principles weaker than RT2

2. For instance,
they showed that ADS is strictly weaker than RT2

2.
However, three major questions remained open:
(1) Seetapun’s Conjecture; (2) Over RCA0, does
SRT2

2 imply RT2
2? (3) Does SRT2

2 or RT2
2 imply IΣ2?

The first problem was solved by Jiayi Liu [10]
who showed that

Theorem 4.1 (Jiayi Liu [10]). Over RCA0,

RT2
2 � WKL0.

However, the solution for (2) and (3) remained
elusive. The most natural approach was to show
that stable colourings always had a low solu-
tion (here the word “low” is a technical term
in recursion theory). Or equivalently, every Δ0

2-
set contains or is disjoint from an infinite low
set. However, Downey, Hirschfeldt, Lempp and
Solomon [5] showed that there is a Δ0

2 set D
such that neither D nor N \D contains an infinite
low subset, blocking the seemingly promising
approach.

It was here that the method of nonstandard
models of arithmetic came into play. We had
been working on recursion theory on nonstandard
models of arithmetic for more than ten years at
the time. Chitat Chong [2] suggested that one
should perhaps look at nonstandard models of
fragments of arithmetic, because the theorem of
Downey, Hirschfeldt, Lempp and Solomon relied
heavily on the inductive strength of the standard
model of arithmetic, with a proof involving infi-
nite injury construction that required IΣ2. On the
other hand, in nonstandard models things behave
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differently. For example, there is a model of BΣ2

and not IΣ2, first constructed by Mytilinaios and
Slaman [11], in which every incomplete Δ0

2 set is
low. In collaboration with Theodore A. Slaman,
after almost ten years work this approach has
turned out to be fruitful:

Theorem 4.2 (Chong, Slaman and Yang [3]). Over
RCA0,

SRT2
2 � RT2

2

SRT2
2 � IΣ2.

Theorem 4.3 (Chong, Slaman and Yang [4]).

RT2
2 � IΣ2.

We end this survey with the following open
questions: Does SRT2

2 imply RT2
2 in an ω-model,

i.e. a model with first-order part the set of natural
numbers? What is the proof-theoretic ordinal of
RCA0 + RT2

2?
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