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I mage restoration refers to the

process of recovering an ideal

image from its corrupted version

which is the one we actually

observe. The corruptions may be due

to noise along the way of acquisition,

out-of-focus of the imaging device,

or packet loss during transmission of

an acquired image from one

location to another. There are several

components in the restoration of

corrupted images. First, we need to

specify what an “image” is and what

“corrupted” means, i.e., to specify an

image model and a degradation

model. Next, we need to design a

restoration model which reconstructs

an image satisfying the image model

and reverses the degradation

process . Whi le a great deal of

research efforts has been dedicated

to the design of novel restoration

models to solve restoration problems

ar isen from new appl icat ions ,

fundamental image restoration tasks

such as denoising, deblurring and

inpainting remain the center of focus

in developing new paradigms for

image restoration. Having said so,

there isn’t any major breakthrough in

the recent decade in the modeling

of the degradation processes of

these fundamental tasks .

Interestingly, it is some new image

models which revolutionize the basic

design of restoration models. In this

ar t icle, we review a functional

analytic point of view to images and

show how it leads to some new

variational and partial differential

equation based restoration models

which are more effect ive than

previous methods in reconstructing

ideal images. Possibly due to its

explicit connection to traditional

mathematical areas such as partial

differential equations, functional

analysis, fluid mechanics etc., the

area of image restoration attracted

researchers across a wide range of

areas to join the taskforce. As a result,

it is definitely not exaggerate to say

that the recent growth of the area of

image restoration is tremendously

faster than it has been in the past few

decades.

A Functional Analytic Image
Model

Beyond the fact that an image is a

matrix (or a stack of matrices in case

of a multi-channel image) of real

values or, in continuum description, a

scalar function (or a vector function)

defined on a rectangular domain, it is

often more useful to prescr ibe a

generative model for it . One

prominent example is the view point

that an image is a realization of a

Markov Random Field — a popular

approach in the 80’s. This image

model naturally leads to Bayesian

image restoration methods. A feature

of the Bayesian approach is that it

allows us to systematically incorporate

prior statistical knowledge about

images into a restoration model.

Besides the aforementioned statistical

image model, we would like highlight

a more recent functional analytic

description of images — an image is

a function of bounded variation.

Mathematically, the space of all

functions on a domain Ω  with

bounded var iation, denoted by

, is defined by
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equipped with the norm .

Here,  is the total variation of u
defined by

The most distinct feature of such a

function space is that it admits

discontinuous functions as its elements

but at the same time certain regularity

is required. The ability to allow

discontinuities is very important in

image processing since they

correspond to edges in an image

which are in turn important to human

perception.

Variational Restoration Models

With the bounded variation (BV)

image model in mind, the next

question is how to build restoration

models on top of it. Experience in

variational calculus suggests that a

natural way is to employ variational

models. Variational models exhibit the

solution of restoration problems as

minimizers of appropriately chosen

functionals. The minimization

technique of choice for such models

routinely involves the solution of

nonlinear partial differential equations

(PDEs) derived as necessary optimality

conditions. In concert to the BV model,

the chosen functionals often involve a

term which measures the total

variation of the image. Take image

denoising as an example, the

degradation model (also known as the

forward model) maybe taken as

where u
0
is an observed noisy image, u

is an ideal noisy free image, and η is an

additive noise such as Gaussian white

noise. A celebrated variational model,

known as the Rudin-Osher-Fatemi model

(ROF model), is formulated as:

Here, the second term denotes the

total variation of u and λ ≥ 0 is a

regularization parameter specified by

the user. This model is proposed by

Rudin, Osher and Fatemi in 1992 [1]. The

idea is to reconstruct an image u that

is closed to the observed one u
0
 but

at the same time its total variation is

small. As we mentioned before, the

distinctive feature of such a total

variation based model is that the

denoised image is allowed to possess

edges. Of course, the restored image

may or may not contain edges,

depending on the presence of edges

in the noisy image. However, the story

would have been totally different if

another function space is used. For

example, it can be proved that

solutions to the following sl ightly

different model (based on the  

space) must contain no edges:

In particular, edges present in the

observed image will be destroyed

after the denoising process. Thus, the

success of a restoration process highly

depends on both a proper restoration

model and its underlying image

model. While the ROF model is a very

successful edge-preserving denoising

model, there are some caveats that

one needs to bear in mind when using

it, for instance, staircasing and contrast

loss. Much recent research is directed

towards the fine-tuning of the ROF

model against these caveats. We refer

the reader to [2] for a recent review of

some latest developments.

Modeling Complex Image
Restoration Problems

In many practical situations, a

corrupted image may be involved in

more than one degradation process.
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This poses new challenges to the design

of restoration models. A fundamental

question is: How do the degradation

processes interact? If the processes

are totally uncorrelated, then we can

restore a corrupted image effectively

by tackl ing the degradation

processes one at a time. However, if

the processes are coupled, then we

need a new model which can

capture the interactions between

different processes and can reverse

all  the coupled processes

simultaneously. In [3], we studied the

problem where the observed image

is noisy, blurry and contains missing or

occluded pixels. We showed that

there is a strong coupling between

blurring and occlusion, especially

near the interface between observed

regions and missing regions. Even

though in the absence of noise,

exper iments demonstrated that

restoration done by deblurr ing

followed by inpainting (a restoration

techniques for fi l l ing-in missing/
occluded pixels) or inpainting
followed by deblurring often leads to
very unsatisfactory results (objects in
the reconstructed image cannot be
recognized by human eyes).

We proposed a joint model which is
capable of denoising, bl ind
deconvolution (deblurring without the
knowledge of the blurring function)
and inpainting simultaneously. The
proposed model is variational and
uses total variation minimization to
control the regularity of the restored
image. The degradation model is

given by

Here, the observed image u
0
 is the sum

of the noise component η and the

convolution of a blurring function k and

an ideal image u . The values of u
0
 are

observed in the region Ω
obs

 whereas

those in the region Ω
miss

are missing. The

proposed restoration model reads as

follows:

Due to the lack of knowledge of the

blurr ing function, we attempt to

reconstruct it as well. A term measuring

the total variation of k is added to

regularize the reconstructed k. We

showed that this model leads to much

better restored images than existing

methods which treat the degradation

processes separately. To obtain a

solution to the above minimization

problem, we solve the first order

optimality condition derived from the

first variation (Fréchet derivative):

Here,            is the characteristic function

on Ω
obs

. While we have a

computational procedure to obtain a

solution in reasonable time, there is still

a great room for further improvement.

Numerical Methods for Solving
Variational Problems

In [4], we proposed a fast 

algorithm for minimizing the highly

nonlinear ROF objective in the 1-

dimensional case where n is th e size of

the signal. The novelty lies on the

important observation that the solution

can be obtained by marching the

regularization parameter. We showed

that the ROF model possesses a nice

semi-group property: solution at a

parameter λ = λ1 + λ2 can be obtained

by first solving the minimization problem

with λ1 followed by treating the solution

as a noisy signal and solving the

χΩobs
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minimization problem again but with

the parameter λ2. By induction, the

original problem can be decomposed

into N problems: λ = λ1 + λ2  + ... + λN.
We proved that there exists a

sequence of critical parameters

λ = λ1 + λ2  + ... + λN  such that N < n,

and that the solution at λ1+...+ λi+1 can

be computed from the solution at

λ1+...+ λi using only Ο(1) operations. This

parameter marching idea gives a novel

paradigm in solving total variation

minimizing problems.

Conclusion

Total variation based methods provide

powerful basic tools to solve a wide

class of image restoration problems.

Current research focuses on refining the

basic models to handle more complex

situations, for instance, images with

extensive textures or special kind of

noise such as salt-and-pepper noise.

Other orthogonal directions include

studying the decomposition of an

image into components induced by a

variation model, and obviously,

designing fast computational methods.
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