Braids: New mathematical insights on

an old topic

A. J. Berrick, Department of Mathematics

he notion of a braid as *anything plaited, interwoven,
or entwined” goes back many centuries, and braids
have been used more or less universally for decoration,
art and fastening purposes, apparently since

prehistory.

The oldest instruction book in English is over 500 years old;
braiding as an art form (kumihimo) in Japan developed over

800 years before that.

Only over the past century or so have
mathematicians fried to describe braids
by means of abstract theory. Fortuitously,
as the theory has developed, it has
enabled applications to outstandiny
problems in physics, chemistry and
bioloyy.

The area of mathematics most suited
to investigation of braids is called
topology. Topoloyy is the study of the
shapes of yeometric objects, which in
applications may be as small as
knotted DNA or long-chain polymers, or
as large as the universe itself. Algebraic

Edo print of a seller of braids in a Kyoto shop.

topoloyists attempt to distinguish such continuously varying objects by associating
to them discrete, algebraic invariants; the process is comparable to capturiny

analogue data in digital format.

In topoloygy, braid theory is an
abstract geometric theory studyiny
the everyday braid concept,and some
generdlizations. The idea is that braids
can be organized intfo groups, in which
the group operation is “do the first braid
on aset of strings, and then follow it with
a second on the twisted strings”. Such
braid groups may be described by
explicit presentations, as was shown by
E. Artin in 1925, For example, we may
compare the two braids at right.

To record these algebraically, we write

Two 3-strand brunnian braids.

I when the leffmost string passes in front of the middle strand,and 1 when it passes
behind. Similarly, the notation is 2 or 2 according as the middle strand passes in
front of or behind the rightmost strand. We list these crossings in order as we move
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down the braid from the top. Thus, the
left braid is denoted

22112211,
while the right braid is
212121.

Evidently, adjacent crossings 1 and 1
cancel each other,as do 2 and 2. Also,
it’s easy to see that the braid described
as 121 may be moved into the position
212 simply by sliding, without any
cutting or tying of strands, called an
“equivalence”.To decide whether such
sliding can take us from the left braid to
the right braid, we precede both by the
braid 12212, giving on the left

1221222112211,
and on the right
12212212121.

By means of the algebraic cancellations
and moves described above, we (or our
computer) may reduce each of these
notations to the “word” 271. From Artin’s
theory, it now follows that the two
pictured braids are equivalent. Thus,
the theory enables a yreat deal of
geometric data to be captured in a
way that allows algorithmic discovery
of key information. Further, the
geometry sugygests a number of
algebraic questions that can be
algorithmically challenging. Such
challengyes can be very useful in the
design of codes that are difficult to
break.Thus, the braid group is a natural
object of study for cryptographers, in
their quest to encode information, such
as financial data on the internet, that
can be decoded only by the “right”
recipient.

The next breakthrough in the topoloygical
analysis of braids came with the
realization,in the 1960s,that a braid with
n strands can also be thought of as a
path of a collection of n distinct
particles moving throuygh time, and
which do not collide. Thus, the particles
are collectively constrained to move
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within a space comprising n distinct
points. Such a space, in which only
certain configurations are permitted, is
known as a configuration space.

The study of paths in configuration
spaces has since become a very lively
topic, well-suited to applications. For
example, a familiar example of such a
path is that of planes approaching an
airport.In robotics,a machine is required
not to bump into certain objects, and
its permitted motion may depend on
the nature of its flexible joints. Thereby,
in medical applications, algorithms
based on paths in configuration spaces
can play a role in the planniny of
intricate surgery. Likewise, in computer
animation, figures are seen as havinyg
more lifelike movement if they avoid
certain “unnatural” configurations (like
an elbow bent the wrong way). At the
molecular level, structural rigidities
constrain ligand-docking with proteins;
which paths lead to a compound
having the desired pharmacoloyical
properties? Similarly, protein-foldiny
seems to be implicated in diseases like
Alzheimer’s and BSE; ayain, one needs
to distinguish configuration space paths
corresponding to preferred outcomes.

To return to the mathematics... Earlier
this decade with two of my colleagues
in the NUS Department of Mathematics,
Wu Jie and Wony Yan Loi, together with
Fred Cohen of University of Rochester,
New York,we beyan a collaboration on
braid ygroups. Our principal innovation
was to address not just the n-stranded
braid group in isolation, but to view the
collection of all braid groups as a single
entity, and study the effect on this
object of removiny strands. Centre
staye in this approach came to be
occupied by a kind of braid first noted
by de Brun in 1895. A brunnian braid is
one that becomes trivial (in effect sheds
all crossings) when any of its strands is
removed. Both braids of the pair
pictured above are brunnian. One is
reminded here of the borromean rings,



a collection of three circles that cannot
be slid apart,and yet, when any one of
the three is removed, one finds that the
two remaining circles are unlinked.
There’s a yood reason for this
association: by joining each top node
to its counterpart underneath the braid,
one obtains the borromean rings from
the above brunnian braids.

From our examination of brunnian
braids, which one can think of as
occurring in familiar three-dimensional
space,we obtained a quite unforeseen
link with basic materials in higher-
dimensional algebraic topoloyy. These
are the homotopy groups of spheres,
groups that can be viewed as the
building-blocks of that subject,because
the geometric objects typically studied
are built out of cells attached to each
other by means of maps from one
higher-dimensional sphere to another.
(Such a sphere can be thought of as
comprising the points in n-dimensional
space that are equidistant from a given
fixed point.) Anything that sheds light on
atopic as important and difficult as the
homotopy groups of spheres may be
regarded as a breakthrough, especially
when it involves something as relatively
accessible as three-dimensional
geometry.

Arising from this research, we recently
held a program on braids at NUS’
Institute for Mathematical Sciences.—
http://www.ims.nus.edu.sg/Programs/
braids/

The program featured a three-week
summer school attended by more than
forty graduate students and
researchers, including some from
outside mathematics, and an
international conference with over 80
participants, amonyg them most of the
subject’s leading experts. The meetiny
concerned both theory and
applications, as may be seen from the
titles below of some of its talks:

Braids and robotics
Braids, twist, writhe, and solar activity

Coloriny n-string braids and tangles and
its application to molecular biology

Length-based cryptanalysis of the braid
group and some applications
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