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Introduction

Many problems arising from applied 

sciences can be abstractly formulated 

as a system navigating over a complex 

energy landscape. Well-known examples 

include conformational changes of bio-

molecules, chemical reactions, nucleation 

events during phase transitions, etc. The 

dynamics proceeds by long waiting 

periods around metastable states 

followed by sudden jumps or transitions 

from one state to another. These 

transition events happen infrequently 

compared with the relaxation time scale 

of the system. However, when they 

do happen, they usually happen 

rather quickly and have important 

consequences. Typically a small 

amount of noise is present in the 

system and it is this that drives these 

rare events. For such an event to 

happen, the system has to wait for a 

long time in metastable states until the 

diff erent components of the noise work 

together to bring the system over some 

energy barrier or go through a sequence 

of correlated changes.  

Figure 1:  Alanine dipeptide 

(upper) and the time history of the 

(normalized) torsion angle   (lower 

panel).

For illustration purposes, let us consider 

the dynamics of a small molecule, the 

alanine dipeptide, at room temperature. 

The molecule in vacuum has two main 

meta-stable confi gurations, which can 

be characterized by diff erent values of 

the torsion angles along the backbone. 

Figure 1 shows the time history of one 

of the torsion angles obtained from 

the Langevin dynamics. It is seen that 

the system spends most of time in the 

two metastable states, with infrequent 

transitions (conformational changes) 

from one to the other. 

It should be noted that the rare events 

that we are interested in are not really 

unusual. For example, conformational 

changes of biomolecules as in the above 

example usually happen on the time 

scale of microseconds or milliseconds. 

These events are rare on the time scale 

of molecular vibration (which is typically 

on the order of femtoseconds,  s), but 

they are not rare on the time scale of 

our daily lives, which is often measured 

in minutes, hours or days. After all, 

all biological processes are driven by 

such events.

Our objective here is not to keep track 

of the detailed dynamics of the system 

but rather to capture statistically the 

sequence of transitions between 

diff erent metastable states. This means 

that, eff ectively, the dynamics of the 

system is modeled by a Markov chain: 

the metastable states are the states 

of the chain and the hopping rates 

are transition rates between diff erent 

metastable states. Therefore the 

main objects we need to compute 

are the transition pathways and the 

transition rates. The computation of 

these quantities represents one of the 

major challenges in computational 

science. The diffi  culty is mainly due to 

the disparity of time scales involved in 

the system, which makes conventional 

simulation techniques (e.g. the direct 

simulation of the Langevin dynamics 

or molecular dynamics, Monte 

Carlo simulations, etc.) prohibitively 

expensive. Indeed, one has to use a 

very small time step and resolve the 

relaxation time scale in Langevin 

dynamics or molecular dynamics for 

numerical stability, thus it takes a huge 
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number of time steps on average to observe a transition 

event in these simulations. 

My work on modeling rare events (joint with Weinan E and 

Eric Vanden-Eijnden) has centered on developing the string 

method, which is now quite popular in computational 

chemistry and materials science, as well as the minimum 

action method for analyzing transition events in non-

gradient systems (i.e. systems without an underlying energy 

landscape).

The minimum action method [1]

The Freidlin-Wentzel theory of large deviation is a rigorous 

mathematical theory for analyzing rare events. It provides an 

estimate for the probability of the transition events between 

metastable states in terms of an action functional. In view of 

this, fi nding the path with maximum probability becomes a 

problem of fi nding the path with minimum action subject 

to the constraint that the two end points of the path are 

fi xed at two metastable states. Based on the large deviation 

theory, we developed the minimum action method for 

analyzing transition events in dynamical systems driven by 

small noise. The method has been successfully applied to a 

variety of problems, including the fi nite-time switching in 

a Ginzburg–Landau system, the Lorenz system, the Kardar-

Parisi-Zhang equation for interface growth, and transitions in 

the Kuramoto-Sivashinsky equation.

Smooth energy landscapes and the zero-temperature 

string method [2,3] 

For gradient systems with a smooth energy landscape in 

which the metastable states are separated by a few isolated 

barriers, the key objects are the transition states, which 

are saddle points on the potential energy landscape that 

separate the metastable states. The relevant notion for the 

transition pathways is that of minimum energy paths (MEPs). 

MEPs are the paths in confi guration space that connects the 

metastable states along which the potential force is parallel 

Figure 2:  A smooth energy landscape and 

the minimum energy path.

Figure 3:  The critical points along a minimum energy path (path a) followed by the magnetization during the 

switching of the element.  The color code indicates the direction of the magnetization.      

Figure 4:  The critical points along a minimum energy path (path b) followed by the magnetization during the 

switching of the element.  The color code indicates the direction of the magnetization.

to the tangent vector (see Figure 2). MEP allows us to identify 

the relevant saddle points which act as bottlenecks for a 

particular transition.  The zero-temperature string method is 

designed to compute MEPs. It fi nds the MEP by evolving a 

string using the steepest descent dynamics in the path space. 

As an interesting application, we used the string method 

to study the switching of micro-magnetic thin fi lms [4]. 

Submicro-sized magnetic elements have found a wide range 

of applications in science and technology, particularly as 

storage devices. As the elements get smaller, the eff ect of 

thermal noise and the issue of data retention time become a 

major concern. For this reason, thermally activated switching 

has attracted considerable attention in the magnetics 

community. From the viewpoint of fundamental sciences, 

thermally activated switching of micro-sized magnetic 

elements is an example of rare events that drive a relatively 

complex system. Figures 3 and 4 show the critical points 

along two MEPs that were obtained using the string method. 

More details can be found in Reference 4.       



5

Fa
cu

lty
 R

es
ea

rc
h 

N
e

w
s
le

tt
e

r

Figure 5:  A rough energy landscape (upper) and 

the transition tube (lower panel).                           

Rough energy landscapes and the fi nite-temperature 

string method [5,6,7]

The situation is quite diff erent for systems with rough energy 

landscapes, as is the case for typical chemical reactions of 

solvated systems. An example of rough energy landscape 

is shown in Figure 5. In this case, traditional notions of 

transition states have to be reconsidered since there may 

not exist specifi c microscopic confi gurations that identify 

the bottleneck of the transition. Instead the potential energy 

landscape typically contains numerous saddle points, most 

of which are separated by barriers that are less than or 

comparable to the noise, and therefore do not act as barriers. 

There is not a unique most probable path for the transition. 

Instead, a collection of paths is important. 

In view of this, we developed the fi nite-temperature string 

method for analyzing transitions in complex systems with 

rough energy landscapes. The key objects in the fi nite-

temperature string method are the transition tube and 

the transition state ensemble, which are defi ned with the 

help of the so-called committor function – the solution of 

the backward Kolmogorov equation in the confi guration 

space with appropriate boundary conditions. Under the 

assumption that the transition paths are localized, we 

fi rst use a variational formulation to reduce the backward 

Kolmogorov equation in the large dimensional confi guration 

space to a large coupled system in one-dimensional space, 

then use an iterative procedure to identify the transition 

tube. An example of the transition tube computed using the 

string method is shown in Figure 5.

The numerical tools we have developed have been 

successfully applied to many problems arising from 

various disciplines, including conformational changes of 

biomolecules, switching of micro-magnetics thin fi lms, 

phase transitions of complex fl uids, dislocation dynamics in 

crystalline solids, etc. More information on these numerical 

methods and their applications can be found on the website: 

http://www.math.nus.edu/~matrw.                                                
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