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Introduction
A common misperception, especially before the recent financial 
crisis, is that quantitative finance and risk management focus on 
two research areas, option pricing and portfolio optimization. 
Here I will discuss five of my research projects related to the 
recent financial crisis: (1) robust risk measures for Basel accords; 
(2) limit order books; (3) profit sharing in hedge funds; (4) real 
estate securities; (5) jump risk during the crisis. Note that none 
of them involves either option pricing or portfolio optimization.

Mean or Median: Robust Risk 
Measures for Basel Accords

Elementary statistics teaches us that both mean and median 
measure the average size of a random quantity, but they 
have different properties. In particular, if we want to obtain 
a robust measurement, then median is a better choice 
than mean. Now what does this have to do with trading 
book capital requirements? In the consultative document 
released by the BIS (Bank of international Settlement) on 
3 May 2012, it is stated that the proposal is to “[move] 
from value-at-risk (VaR) to expected shortfall (ES), a risk 
measure that better captures tail risk.” We have serious concerns 
about this proposal. In particular, in Kou, Peng, and Heyde [1] we 
provide an axiomatic framework to justify VaR.
 First of all, if we want to capture the tail risk, e.g., the size of 
the loss beyond the 99% level, we can either use ES at 99% level, 
which is tail conditional mean at 99%, or, alternatively, median 
shortfall (MS) at 99% level, which is defined as the median of the 
conditional distribution of the loss given that the loss exceeds the 

99% VaR. The MS at 99% level is simply equal to VaR at 99.5% 
level if the underlying loss distribution is continuous, and the two 
tend to be very close even if the distribution is not continuous. 
Hence, just like ES, MS (equivalently, VaR at a higher level) also 
measures the riskiness of a position by taking into account both 
the size and likelihood of losses.
 Secondly, robustness is indispensable for regulatory risk 
measures. In the internal models-based approach for determining 
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trading book capital requirements, regulators impose the risk 
measure and allow institutions to use their own internal risk 
models and private data in the calculation. From a regulator’s 
viewpoint, a regulatory risk measure must be unambiguous, stable, 
and capable of being implemented consistently across all the 
relevant institutions, no matter what internal beliefs or internal 
models each may rely on. The external risk measure should be 
robust; otherwise, different institutions can be required to hold 
very different regulatory capital for the same risk exposure, which 
makes the risk measure unacceptable to both the institutions and 
the regulators. The requirement of robustness for regulatory risk 
measures is not anything new; in general, robustness is essential 
for law enforcement, as is implied by legal realism, one of the 
basic concepts of law.

Limit Order Books
Compared to dealer markets, traders in limit order markets can 
submit either limit orders or market orders, leading to more 
flexibility and transparency. Limit order books is important for 
understanding high frequency trading, which is of great concern 
to Singapore Exchange. Of great importance for limit order books 
is market depth, which is the average number of limit order shares 
placed per unit price. In fact, market depth is a commonly used 

indicator for limit order books. In Chen, Kou 
and Wang [2], we propose a model for 
limit order books with stochastic, reverse 
U-shaped, market depth, consistent with 
empirical studies. Stochastic market depth 
is necessary to accommodate various 
order activities, such as limit order 
submission at and outside the best 
quotes and order cancelation, which 
may account for a large proportion 
of limit order activities. To show 
the analytical tractability of the 
model, in addition to a dynamic 
programming formulation of 
the optimal execution problem, 
we attempt to provide easily 
computable and tight upper and 

lower bounds for the optimal execution cost, 
as well as their resulting trading strategies via 

quadratic programming and jump linear quadratic 
control.

Pro�t Sharing in Hedge Funds
Many people believe that a cause of the recent financial crisis 

is the limited liability of fund managers, which means profits are 
shared but not losses. This has serious consequence in terms of 

risk taking. For example, suppose one has a trading strategy that 
leads to 20% gains 99% of the time. Then it is not clear at all 
whether a rational individual should use the strategy, as those 1% 
cases may lead to huge losses. However, it is optimal for fund 
managers and corporations to pursue such a strategy due to the 
limited liability protection. Since the limited liability protection 
is a fundamental principle of firm structure, there is no way to 
eliminate it.
 But one can still have some checks and balances. For example, 
the fund managers can set up a deposit, such as 10% of fund 
capital, by using the manager’s own money, and if there is a 
loss, the deposit money will be used first to offset the losses; in 
return the fund manager can ask for higher profit sharing such as 
40%, versus the current hedge fund standard of 20%. The above 
compensation scheme is called the first-loss scheme. It has been 
quite popular in China for privately held funds (which are similar 
to hedge funds in the U.S.), and is emerging in the U.S. according 
to a CBS Marketwatch report on 23 May 2011.
 In He and Kou [3], we analyze both the first loss scheme and 
the traditional scheme, in which the fund managers invest 10% 
regular capital and get 20% profit sharing. By using the s-shaped 
utility function from behavioral finance, we find that if the 10–30 
first-loss scheme (i.e. 10% as the first loss capital in return for 
profit sharing at 30%) is used, then both fund managers and 
investors will be better off than under the traditional scheme, as 
measured by their utility functions. Furthermore, the risk of the 
hedge fund strategy is lower in the 10–30 first-loss scheme.

Real Estate Securities
To a large extent, the financial collapse in 2007–2009 was the 
result of a national real estate market that proved to be much 
more tightly interconnected — much more systemically risky — than 
had previously been recognized. This market is also closely linked 
to the public sector: the U.S. Federal Reserve, which traditionally 
held only Treasury securities, currently holds over US$1 trillion 
in mortgage-backed securities; and the Treasury’s actions in the 
crisis made explicit the government guarantee of debt securities 
issued by Fannie Mae and Freddie Mac. The creation and continued 
existence of these government sponsored enterprises reflects 
the public interest in supporting home ownership; but the near 
collapse of these giants also reflect large-scale failures of risk 
management.
 Spatial interaction has been well-studied in the spatial 
econometrics literature. Instead of studying prices of houses and 
apartments that are illiquid and difficult to be sold short, we study 
the risk and return of real estate securities that are liquid and can 
be easily shorted, such as futures contracts on the S&P/Case-
Shiller Home Price Indices (CSI Indices). More precisely, in Kou, 
Peng, and Zhong [4], we attempt to connect spatial econometrics, 
which emphasizes the statistical modeling of spatial interaction, 
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with classical asset pricing models including the capital asset 
pricing model (CAPM) and the arbitrage pricing theory (APT), 
which characterize risk-return relationship of financial assets 
that can be freely traded, especially be sold short. Furthermore, 
we give rigorous econometric analysis of the models by deriving 
identifiability conditions for the parameters and asymptotic 
properties of estimators and studying test statistics needed for 
implementing the models. Finally, an empirical study of the 
futures contracts on S&P/CSI Indices shows that the spatial APT 
is not rejected and the spatial interaction parameter is statistically 
significant.

the crisis. Therefore, our answer to the second question is that 
there seems to be finite number of large jumps in equity returns. 
In short, affine jump-diffusion model with a proper jump size 
distribution can fit equity return data well both before and after 
the crisis. Intuition behind this lies in the differences between the 
two jump-size distributions.
 In terms of small jumps, the normal distribution does not have 
monotone structure. For example, it can be seen from Figure 1 
(normal density on the left and double exponential density on 
the right) that, if jump sizes are normally distributed with mean 
-2%, jumps down -2% is more likely to occur (i.e. has a higher 
density) than jumps down just -1%. The monotone structure of 
double-exponential jumps provides better model fit of small jumps 
in equity returns. 
 In terms of large jumps, the double-exponential distribution 
is also suitable because it has heavy tails. Heyde and Kou [7] 
show that it is difficult to distinguish exponential-type tails from 
power-type tails from empirical data. For example, far at the 
right-tail, say, at the probability of 0.01%, the population quantile 
of the exponential distribution is 6.02, which is larger than 5.97, 
the population quantile of normalized Student-distribution with 
degree of freedom 7, even though we know that the Student-t 
distribution should have an asymptotically heavier tail than the 
exponential-type distribution. The heavy-tail feature of the double 
exponential distribution helps to fit the large jumps during the 
crisis. 
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Fig. 1. Non-monotonicity of the normal density (left) and the monotonicity of 
the double exponential density (right).

Jump Risk during the Crisis
It is well known that jump risk affects equity returns significantly. 
In Kou, Yu, and Zhong [5], we attempt to answer two questions 
about jumps in equity indices: (i) How did jumps in equity 
index returns change during the financial crisis in 2007–2011; 
in particular, were there significant changes in jump rates or in 
jump sizes, or both? (ii) Were there finite number of large jumps 
or infinite number of small jumps in equity returns before and 
during the crisis?
 For the first question, the increases of jump rates when market 
is in distress, especially for the 1987 crash and the tech-bubble 
burst around 2001–2002, are well documented. However, whether 
there are significant changes in jump sizes during financial 
crises has not been addressed in the existing literature. Also, the 
previous empirical studies in general do not distinguish positive 
and negative jump rates.
  Based on the latest data on S&P 500 daily returns up to 
December 2011, we find both positive and negative jump rates 
increased significantly during the financial crisis, while, somewhat 
surprisingly, there is little evidence that average jump sizes changed 
before and after the crisis.
 The results in the existing literature regarding the second 
question are mixed; furthermore, most of the empirical studies on 
the subject assume normally distributed jumps in equity returns. 
We found that a simple affine jump-diffusion model with both 
stochastic volatility and double exponential jump sizes [6] in 
returns fits S&P 500 daily return data well before and during 
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