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  onvex matrix cone programming (including the most  
  notable class of semidefinite programming (SDP)  
  [13]), is a major development in optimization in the 
last two decades, for which some thought to be comparable to the 
revolutionary development of linear programming in the 1950s. 
The optimization problems under consideration deal with convex 
cost functions and linear constraints, but the matrix variables are 
constrained to be in some specific convex cones. For the case of 
a linear SDP, the problem is to optimize a linear cost function 
subject to the constraint that the matrix decision variable must 
lie in the cone of symmetric positive semidefinite matrices while 
also satisfying some linear equality and/or inequality constraints. 
 It is known that SDP includes linear programming as an 
important special class which on its own has been widely used as 
a quantitative modeling tool in engineering/economic/business. 
However the modeling power and applications of SDP and its 
generalizations are far wider. Today, the applications of SDP, and 
more generally matrix optimization (MatOpt) problems, span a 
wide variety of areas including linear matrix inequality in systems 
and control, combinatorial optimization, quantum information, 
machine learning, signal processing and communications, 
structural optimization, Euclidean metric embedding and sensor 
network localization, covariance matrix estimations in statistics, 
risk management and finance, robust optimization, and matrix 
approximation problems.
 The applications of MatOpt appear to be unlimited, as one may 
extrapolate from exciting developments in the past two decades, 
and especially the recent explosive developments in diverse areas. 
For example, in matrix completion, SDP technique, via solving 
a nuclear norm minimization problem, is used to fill in missing 
entries in a partially specified matrix, such as movie ratings by 
viewers on movies they had watched. In many applications such 
as matrix completion, the success depends critically on our ability 
to solve large-scale MatOpt problems efficiently.
 While many MatOpt problems can be reformulated as 
standard SDPs by adding auxiliary constraints and variables 
and/or increasing the dimension of the matrix variables, such 
a reformulation is however not practically viable since the 
reformulated SDPs would contain unnecessarily large number 
of additional constraints and/or have unnecessarily large matrix 
dimensions. This unfortunate situation is exacerbated by the fact 
that algorithms (as implemented in interior-point method based 
solvers such as SeDuMi by J. Sturm [9] or SDPT3 [14,16] by the 
second author) which are highly successful in handling medium-
scale general SDP problems can no longer meet the demand 
of large-scale problems because the interior-point algorithmic 
framework would generally lead to excessive computational cost 
and core memory requirements. Thus a different algorithmic 
framework must be designed for large problems with structures 
which can be exploited effectively to reduce the computational 
demand.
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 In our work over the past five years, we have designed, analyzed 
and developed a variety of semismooth Newton-CG (conjugate 
gradient) proximal-point and augmented Lagrangian algorithms 
for solving several important classes of large scale MatOpt 
problems. In particular, we have designed a highly successful 
two-phase augmented Lagrangian method (called SDPNAL+) for 
solving large-scale linear SDP+ problems for which the matrix 
variables are constrained to be both positive semdefinite and 
nonnegative [19,20]. The class of SDP+ problems is important 
because such problems typically arise from convex relaxation of 
NP-hard combinatorial problems such the quadratic assignment 
problems, maximum stable set problems, as well as the k-clustering 
problems. As an illustration of the efficiency of our method, to 
solve an SDP+ problem whose matrix dimension is 200 and the 
number of linear equality constraints is 10000, the most advanced 
interior-point based SDP solvers such as SDPT3 or SeDuMi would 
take at least 20 hours to solve such a problem in a high-end 
desktop PC available today. But our SDPNAL+ solver can solve 
such problem in a matter of a few minutes.
 Unlike interior-point algorithms, the design of efficient 
and robust proximal-point and augmented Lagrangian-based 
algorithms are highly dependent on the structures available for 
the class of problems under consideration. The key to successfully 
design efficient and robust proximal-point or augmented 
Lagrangian-based algorithms hinges critically on our ability to 
extract and exploit the specific features/structures in various 
problem classes so that the inner optimization sub-problems 
appearing in each iteration of the algorithms are computationally 
tractable. As a result, different classes of problems would require 
different algorithmic designs in order to successfully exploit the 
underlying structures to achieve computational efficiency. Besides 
having developed highly efficient solvers for linear SDP and SDP+ 
problems, in our work, we have also developed solvers for other 
important classes of MatOpt problems including (a) large scale 
convex quadratic SDP [6]; (b) log-determinant maximization 
problems with mixed-norm regularizations which are important for 
estimating covariance matrices in the high-dimension low-sample-

size setting [17,18]; (c) covariance selection problems; (d) large 
scale Euclidean distance matrix estimation problems which arise in 
various Euclidean metric embedding problems such as embedding 
protein sequences in three-dimensional space for clustering 
purpose, sensor network localization and molecular conformation 
[8]; (e) large scale nuclear/spectral norm regularized matrix least 
squares problems with structural polyhedral constraints [5,7] which 
arise naturally in relaxations of low-rank matrix completion [1], 
and robust principal component analysis [2].
 In our approach to design and develop new algorithms based 
on the inexact proximal or augmented Lagrangian frameworks, we 
analyzed and showed that certain large-scale dense linear systems 
of equations arising in the semismooth Newton proximal-point 
and augmented Lagrangian algorithms will be moderately well-
conditioned when certain constraint nondegeneracy conditions 
hold whereas the corresponding counterpart in the commonly 
used interior-point methods would inherently be ill-conditioned. 
The implication of such a contrasting property is that algorithms 
based on proximal-point and augmented Lagrangian framework 
would have a great potential to efficiently solve large-scale MatOpt 
problems compared to the popular interior-point framework, 
because the Krylov subspace iterative solvers (such as CG) 
necessarily needed to solve the large linear systems of equations 
would be efficient for the former but not the latter. Provided that 
the inner optimization sub-problems have desirable theoretical 
properties such as satisfying constraint nondegeneracy conditions 
and strong semismoothness, we can show that the efficient variants 
of semismooth Newton-CG methods we have developed to solve 
them are guaranteed to have at least superlinear local convergence. 
 The success of our designed algorithms is built on the 
comprehensive theoretical studies we have conducted on the Simulated molecular conformation via semidefinite programming.

Clustering of 630 protein sequences via Euclidean metric embedding of  
sequence dissimilarities.
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closed-form solutions and semismoothness properties of the 
metric projectors onto various classes of convex cones as well as 
the proximal-point mappings of various nonsmooth functions 
such as the nuclear norm and spectral norm (see [3,4,10]). These 
theoretical results not only provide the fundamental computational 
building blocks for our design of algorithms for solving large-scale 
problems involving those cones or nonsmooth functions, they 
are also important for the convergence analysis of the algorithms 
developed. In particular, the theoretical results are essential for 
analyzing the constraint nondegeneracy conditions needed for 
local quadratic convergence of semismooth/smoothing Newton 
methods [11] designed to solve the inner sub-problems. 
 In addition to semismooth Newton-CG proximal-point and 
augmented Lagrangian-based algorithms which made use of 
second-order information wisely, we have developed highly 
successful first-order algorithms based on accelerated proximal 
gradient methods and semi-proximal alternating direction 
methods of multipliers (SPADMM) for the various classes of 
MatOpt problems mentioned above [6,12,15]. In particular, we 
have recently developed a convergent semi-proximal alternating 
direction method of multipliers for MatOpt problems with four-
block constraints. The importance of these first-order methods 
lies in the fact that (a) they are simpler to implement compared 
to methods based on second-order information (b) sometimes 
they are highly efficient for finding a solution of moderate 
accuracy (c) they can be used to warm-start the second-order 
based methods. Indeed, the highly efficient convergent SPADMM 
we have developed served a very important role in warm-starting 
our SDPNAL+ solver. 
 Currently, our research on algorithms for large-scale MatOpt 
problems are among the most general and advanced, and our 
algorithms are considered to be among the most successful 
for solving a variety of large-scale problems with millions of 
constraints.  
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