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  n the study of geometry, mathematicians are interested  
  in how certain geometrical objects curve or osculate,  
  and the “curvature” of a geometrical object is a 
measure of how the geometrical object is curving at its various 
points. In the familiar case of two-dimensional surfaces in the 
three-dimensional Euclidean space, the curvature at a point of 
the surface is a number which may be positive, zero or negative.  
When the surface is a plane (which, of course, does not curve at 
all), the curvature is zero everywhere on the plane. By contrast, 
an ellipsoid (see Figure 1) and a horse saddle (or more formally, a 
hyperbolic paraboloid; see Figure 2) do curve a lot. Furthermore, 

I the ellipsoid and the horse saddle actually curve in different ways. 
To visualize this, one may take any point on the ellipsoid, and 
consider the tangent plane touching the ellipsoid at that point.  
Then one easily sees that the whole ellipsoid lies on one side of 
the tangent plane. On the other hand, when one considers the 
tangent plane touching the horse saddle at a given point, one 
observes that there are points of the horse saddle lying on each 
of the two sides of the tangent plane. The standard convention 
is that the ellipsoid is of positive curvature at each of its points, 
while the horse saddle is everywhere of negative curvature.
 An important class of higher dimensional geometrical objects 
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Fig. 1.  An ellipsoid.

Fig. 2.  A hyperbolic paraboloid.

are known as manifolds.  Roughly speaking, for any positive integer 
n, an n-dimensional manifold is a geometrical object which locally 
looks like a piece of the n-dimensional Euclidean space. Ellipsoids 
and horse saddles are examples of two-dimensional manifolds. The 
notion of curvature has also been generalized and is applicable 
to manifolds.
 Recall also that complex numbers are numbers of the form 
x+iy, where x and y are real numbers and i denotes a square 
root of -1 in the sense that i2=-1.  As such, the set of complex 
numbers are represented by points in the Argand diagram, which 
is simply the coordinate plane or the two-dimensional Euclidean 
plane. Explicitly, the complex number x+iy corresponds to the 
point (x,y ). As a consequence, one may multiply two points in the 
Euclidean plane, since one can multiply two complex numbers! 
The Euclidean plane endowed with this additional multiplicative 
structure (or more formally, complex structure) is simply called 
the complex Euclidean plane. For any positive integer n, the 
n-dimensional complex Euclidean space is simply the n-fold 
Cartesian product of the complex Euclidean plane. More generally, 
an n-dimensional complex manifold is simply a geometrical object 
which locally looks like a piece of the n-dimensional complex 

Euclidean space. In particular, an n-dimensional complex manifold 
is also a 2n-dimensional (real) manifold.
 We are concerned with interaction between geometric and 
analytic properties of complex manifolds. Complex manifolds 
arise naturally in and are deeply connected to other branches of 
mathematics, including hyperbolic geometry, algebraic geometry, 
symplectic geometry, number theory and mathematical physics 
such as string theory. In this article, we will focus on those complex 
manifolds that arise as moduli spaces (or equivalently parameter 
spaces) that parameterize certain geometrical objects.
 One-dimensional complex manifolds are also known as 
Riemann surfaces. By the uniformization theorem, the universal 
cover of a Riemann surface is either the complex projective plane, 
the complex Euclidean plane C, or the complex hyperbolic plane.  
Geometrically the complex hyperbolic plane is endowed with 
the complete hyperbolic metric of constant negative curvature.  
Analytically, the complex hyperbolic plane can be identified with 
the unit disc ∆={zεC:|z|<1} in the complex Euclidean plane. 
Then it follows from Liouville’s Theorem in complex analysis that 
any holomorphic map from C to the complex hyperbolic plane 
is necessarily a constant map. This notion has been generalized 
to the higher dimensional case, and one says that a complex 
manifold M is Brody hyperbolic if any holomorphic map f: C→M 
must be a constant map.  We remark that the complex projective 
plane and the complex Euclidean plane are not Brody hyperbolic. 
Generally speaking, hyperbolicity refers to certain property of 
complex manifolds possessed by the complex hyperbolic plane 
but not possessed by the complex projective plane or the complex 
Euclidean plane.
 Now we recall the moduli space M

g of compact Riemann 
surfaces X of genus g ≥2 (which form an important subset of the 
set of all Riemann surfaces), which roughly speaking, parameterizes 
the complex structures on the underlying surface of X. Strictly 
speaking, Mg is not a complex manifold, but it admits a smooth 
covering which is a (3g-3)-dimensional complex manifold known 
as the Teichmüller space Tg. The hyperbolicity properties of Tg can 
be studied from a differential geometric perspective. For this, we 
recall that Tg is endowed with a distinguished metric called the 
Weil-Petersson metric (roughly speaking, once a manifold has been 
endowed with a metric, we can talk about the distance between 
any two points in the manifold, and we can also talk about the 
geometry of the manifold associated to the metric, etc.). By the 
works of Ahlfors ([1], [2]), Royden [6] and Wolpert [12], one 
knows that Tg (with the geometry associated to the Weil-Petersson 
metric) is everywhere of negative curvature. In fact, their results 
imply that Tg possesses certain hyperbolicity property known as 
Kobayashi hyperbolicity, which is a stronger property than Brody 
hyperbolicity (see [4], [5] for more detailed discussion).
 It is interesting and natural to ask whether the property 
of Kobayashi hyperbolicity is possessed by the moduli spaces 
of n-dimensional complex manifolds when n ≥ 2.  The first 
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breakthrough along this direction was made by Siu [7] who 
computed the curvature tensor of the Weil-Petersson metric on 
the moduli spaces of an important class of complex manifolds 
known as canonically polarized manifolds (Aubin [3] and Yau [13] 
showed that every canonically polarized manifold admits a nice 
metric known as the  Kähler-Einstein metric). It turns out that the 
expression of the curvature of the Weil-Petersson metric contains 
negative terms as well as a positive term (the positive term only 
appears when n ≥ 2), and as such, one cannot decide conclusively 
the question raised in the beginning of this paragraph, even though 
an expression of the curvature tensor is already available (see also 
[8], [9] for related works in this direction).  There is also no known 
example which can give a negative answer to this open folklore 
question, which has been around since the 1980’s.
 Recently the author, in collaboration with Sai-Kee Yeung 
of Purdue University, made some progress in this direction (see 
[10]), which we describe briefly here. Recall that when n ≥ 2, the 
curvature tensor of the Weil-Petersson metric contains some good 
terms which are negative as well as a bad term which is positive. 
In a somewhat simplified picture, our approach is to modify the 
Weil-Petersson metric by this bad term. The curvature expression 
of the modified metric will again contain good terms (which are 
negative) as well as a bad positive term. The process is repeated, 
and eventually for any effectively parameterized family of 
canonically polarized manifolds over a base complex manifold, one 
obtains a metric on the base complex manifold whose curvature 
is everywhere negative. Roughly speaking, we have modified the 
geometry of the base complex manifold which initially contains 
ellipsoidal points as well as saddle-like points (see Figure 3) so that 
the base complex manifold with the new geometry contains only 
saddle-like points (see Figure 4).  In fact, our result implies that 
the base complex manifold is necessarily Kobayashi hyperbolic. 
We remark that Viehweg and Zuo [11] showed earlier, using 
algebraic geometric methods, that such base complex manifold 
is Brody hyperbolic. Currently the author and his collaborator are 
investigating how the approach in [10] may be adapted to study 
other moduli spaces. other moduli spaces. 
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[8], [9] for related works in this direction).  There is also no known 
example which can give a negative answer to this open folklore 

Fig. 3.  A surface of mixed curvature.

Fig. 4.  A surface of negative curvature. 
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