Research Highlight: The inductive strength of Ramsey's theorem for pairs

Work of Professor CHONG Chi Tat, NUS, Professor YANG Yue, NUS and Professor Theodore SLAMAN, University of California, Berkeley

Ramsey's theorem states that for natural numbers n, k, RT^n_k holds, where RT^n_k states: if the *n*-element subsets of natural numbers are colored in one of k colors, then there is an infinite set all of whose *n*-element subsets have the same color.

Logical analysis of Ramsey's theorem is based on a system called RCA₀. It is known that when n > 2, and k > 1, RTⁿ_k implies the arithmetic comprehension axiom (Jockusch 1972). Since the case k = 1 is trivial, the proof-theoretic strength, in particular the inductive strength, of RT²₂ became a major open problem when it was officially posed in 2001 (although the problem was known some years before that). The main result of this paper says that RT²₂ does not prove \sum_{2} -induction, thus provided a tighter upper bound of its first-order strength.

Reference:

C.T. Chong, T. Slaman and Y. Yang, "The inductive strength of Ramsey's Theorem for Pairs". Advances in Mathematics, 308 (2017): 121-141.