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Agenda

• Motivation - Health monitoring in aeronautics
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• Anomalies and extremal dependence structure: a MV-set approach
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Motivation - Context

• Era of Data - Ubiquity of sensors
ex : an aircraft engine can equipped with more than 2000 sensors
monitoring its functioning (pressure, temperature, vibrations, etc.)

• Very high dimensional setting: traditional survival analysis is
inappropriate for predictive maintenance

• Health monitoring: avoid failures via early detection of abnormal
behavior of a complex infrastructure

• The vast majority of the data are unlabeled
Rarity should replace labels...

Anomalies correspond to multivariate extreme observations,
but the reverse is not true in general

• False alarms are very expensive and should be interpretable by
professional experts
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The many faces of Anomaly Detection
Anomaly: ”an observation which deviates so much from other
observations as to arouse suspicions that it was generated by a different
mechanism (Hawkins 1980)”

What is Anomaly Detection ?

”Finding patterns in the data that do not conform to expected behavior”
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Learning how to detect anomalies automatically

• Step 1: Based on training data, learn a region in the space of
observations describing the ”normal” behavior

• Step 2: Detect anomalies among new observations.
Anomalies are observations lying outside the critical region
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The many faces of Anomaly Detection

Different frameworks for Anomaly Detection

• Supervised AD
- Labels available for both normal data and anomalies
- Similar to rare class mining

• Semi-supervised AD
- Only normal data available to train
- The algorithm learns on normal data only

• Unsupervised AD
- no labels, training set = normal + abnormal data
- Assumption: anomalies are very rare
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Supervised Learning Framework for Anomaly Detection

• (X ,Y ) random pair, valued in Rd × {−1,+1} with d >> 1
A positive label ’Y = +1’ is assigned to anomalies.

• Observation: sample Dn of i.i.d. copies of (X ,Y )

(X1,Y1), . . . , (Xn,Yn)

• Goal: from labeled data Dn, learn to predict labels assigned to new
data X ′1, . . . , X

′
n′

• A typical binary classification problem...
except that p = P{Y = +1} may be extremely small
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The Flagship Machine-Learning Problem:
Supervised Binary Classification

• X ∈ observation with dist. µ(dx) and Y ∈ {−1,+1} binary label

• A posteriori probability ∼ regression function

∀x ∈ Rd , η(x) = P{Y = 1 | X = x}

• g : Rd → {−1,+1} prediction rule - classifier

• Performance measure = classification error

L(g) = P{g(X ) 6= Y } → min
g

L(g)

• Solution: Bayes classifier g∗(x) = 2I{η(x) > 1/2} − 1

• Bayes error L∗ = L(g∗) = 1/2− E[|2η(X )− 1|]/2
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Empirical Risk Minimization - Basics

• Sample (X1,Y1), . . . , (Xn,Yn) with i.i.d. copies of (X ,Y )

• Class G of classifiers of a given complexity

• Empirical Risk Minimization principle

ĝn = arg min
g∈G

Ln(g)

with Ln(g)
def
= 1

n

∑n
i=1 I{g(Xi ) 6= Yi}

• Mimic the best classifier among the class

ḡ = arg min
g∈G

L(g)
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Guarantees - Empirical processes in classification

• Bias-variance decomposition

L(ĝn)− L∗ ≤ (L(ĝn)− Ln(ĝn)) + (Ln(ḡ)− L(ḡ)) + (L(ḡ)− L∗)

≤ 2

(
sup
g∈G
| Ln(g)− L(g) |

)
+

(
inf
g∈G

L(g)− L∗
)

• Concentration results

With probability 1− δ:

sup
g∈G
| Ln(g)− L(g) |≤ E

[
sup
g∈G
| Ln(g)− L(g) |

]
+

√
2 log(1/δ)

n
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Main results in classification theory

1. Bayes risk consistency and rate of convergence

Complexity control:

E

[
sup
g∈G
| Ln(g)− L(g) |

]
≤ C

√
V

n

if G is a VC class with VC dimension V .

2. Fast rates of convergence

Under variance control: rate faster than n−1/2

3. Convex risk minimization: Boosting, SVM, Neural Nets, etc.

4. Oracle inequalities - Model selection
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Unsupervised anomaly detection
X1, . . . ,Xn ∈ Rd i.i.d. realizations of unknown probability measure
µ(dx) = f (x)λ(dx)

• Anomalies are supposed to be rare events, located in the tail of the
distribution
a critical region should be defined as the complementary of a density
sublevel set
• Estimation of the region where the data are most concentrated: region

of minimum volume for a given probability content α close to 1
• M-estimation formulation

Minimum Volume set, α = 0.95 12/1



Minimum Volume set (MV set) - the Excess Mass approach

Definition [Einmahl & Mason, 1992]

• α ∈ [0, 1] (for anomaly detection α is close to 1)

• C class of measurable sets

• µ(dx) unknown probability measure of the observations

• λ Lebesgue measure

Q(α) = arg min
C∈C
{λ(C ),P(X ∈ C ) > α}

• For small values of α, one recovers the modes.

• For large values:

• Samples that belong to the MV set will be considered as normal
• Samples that do not belong to the MV set will be considered as

anomalies
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Theoretical MV sets

Consider the following assumptions:

• The distribution µ has a density f (x) w.r.t. λ such that f (X ) is
bounded,

• The distribution of the r.v. f (X ) has no plateau, i.e.
P(f (X ) = c) = 0 for any c > 0.

Under these hypotheses, there exists a unique MV set at level α:

G ∗α = {x ∈ Rd : h(x) ≥ tα}

is a density level set, tα is the quantile at level 1− α of the r.v. h(X ).
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MV set estimation
Goal: learn a MV set Q(α) from X1, . . . ,Xn

Empirical Risk Minimization paradigm: replace the unknown
distribution µ by its statistical counterpart

µ̂n =
1

n

n∑
i=1

δXi

and solve minG∈G λ(G ) subject to µ̂n(G ) ≥ α− φn, where φn is some
tolerance level and G ⊂ C is a class of measurable subsets whose volume
can be computed/estimated (e.g. Monte Carlo).
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Connection with ERM, Scott & Nowak ’06

• The approach is valid, provided G is simple enough, i.e. of controlled
complexity (e.g. finite VC dimension)

sup
G∈G
|µ̂n(G )− µ(G )| ≤ c

√
V

n

• The approach is accurate, provided that G is rich enough, i.e.
contains a reasonable approximant of a MV set at level α

• The tolerance level should be chosen of the same order as
supG∈G |µ̂n(G )− µ(G )|

• Model selection: G1, . . . , GK ⇒ Ĝ1, . . . , ĜK

k̂ = arg min
k

{
λ(Ĝk) + 2φk : µ̂n(Ĝk) ≥ α− φk

}
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Statistical Methods

• Plug-in techniques (fit a model for f (x))

• Turning unsupervised AD into binary classification

• Histograms

• Decision trees

• SVM

• Isolation Forest
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Unsupervised anomaly detection - Mass Volume curves

• Anomalies are the rare events, located in the low density regions

• Most unsupervised anomaly detection algorithms learn a scoring
function

s : x ∈ Rd 7→ R

such that the smaller s(x) the more abnormal is the observation x .

• Ideal scoring functions: any increasing transform of the density h(x)
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Mass Volume curve

X ∼ h, scoring function s, t-level set of s: {x , s(x) ≥ t}

• αs(t) = P(s(X ) ≥ t) mass of the t-level set

• λs(t) = λ({x , s(x) ≥ t}) volume of t-the level set.

Mass Volume curve MVs of s(x) [Clémençon and Jakubowicz, 2013]:

t ∈ R 7→ (αs(t), λs(t))
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Mass Volume curve

MVs also defined as the function

MVs : α ∈ (0, 1) 7→ λs(α−1
s (α)) = λ({x , s(x) ≥ α−1

s (α)})

where α−1
s generalized inverse of αs .

Property [Clémençon and Jakubowicz, 2013]

Let MV∗ be the MV curve of the underlying density h and assume that h
has no flat parts, then for all s with no flat parts,

∀α ∈ (0, 1), MV∗(α) ≤ MVs(α)

The closer is MVs to MV∗ the better is s
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A MEVT Approach to Anomaly Detection

Main assumption:

Anomalies correspond to unusual simultaneous occurrence of extreme
values for specific variables.

State of the Art: experts/practicioners set thresholds by hand

Anomaly detection in ‘extreme’ data

’Extremes’ = points located in the tail of the distribution.
In Big Data samples, extremes can be observed with high probability

Learn statistically what ‘normal’ among extremes means?

Requirement: beyond interpretability and false alarm rate reduction, the
method should be insensitive to unit choices
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Multivariate EVT for Anomaly detection

• If ‘normal’ data are heavy tailed, there may be extreme normal data.

How to distinguish between large anomalies and normal extremes?

• Anomalies among extremes are those which direction X/||X ||∞ is
unusual.

Our proposal: critical regions should be complementary sets of
MV-sets of the angular measure, that describes the dependence
structure
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Multivariate extremes

• Random vectors X = (X1, . . . ,Xd ,) ; Xj ≥ 0

• Margins: Xj ∼ Fj , 1 ≤ j ≤ d (continuous).

• Preliminary step: Standardization Vj = T (Xj) = 1
1−Fj (Xj ))

⇒ P(Vj > v) = 1
v .

• Goal : P{V ∈ A}, A ’far from 0’ ?
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Fundamental assumption and consequences de Haan, Resnick, 70’s, 80’s

Intuitively: P(V ∈ tA) ' 1
t P(V ∈ A)

Multivariate regular variation

0 /∈ Ā : t P
(

V

t
∈ A

)
−−−→
t→∞

µ(A), µ : Exponent measure

necessarily: µ(tA) = t−1µ(A) (Radial homogeneity)
→ angular measure on the sphere : Φ(B) = µ{tB, t ≥ 1}

General model for extremes

P
(
‖V‖ ≥ r ; V

‖V‖ ∈ B
)
' r−1 Φ(B)

Polar coordinates: r(V) = ‖V‖, θ(V) = V/‖V‖
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Angular measure

• Φ rules the joint distribution of extremes

• Asymptotic dependence: (V1,V2) may be large together.

vs

• Asymptotic independence: only V1 or V2 may be large.

No assumption on Φ: non-parametric framework.
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MV-set estimation on the Sphere

Let λd be Lebesgue measure on Sd−1 Fix α ∈ (0,Φ(Sd−1)). Consider the
’asymptotic’ problem:

min
Ω∈B(Sd−1)

λd(Ω) subject to Φ(Ω) ≥ α.

Replace the limit measure by the sub-asymptotic angular measure at finite
level t:

Φt(Ω) = tP{r(V) > t, θ(V) ∈ Ω}

We have Φt(Ω)→ Φ(Ω) as t →∞. Replace the problem above by a non
asymptotic version:

min
Ω∈B(Sd−1)

λd(Ω) subject to Φt(Ω) ≥ α.

The radius threshold t plays a role in the statistical method
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Algorithm - Empirical estimation of an angular MV-set
Inputs: Training data X1, . . . ,Xn, k ∈ {1, . . . , n}, mass level α,
confidence level 1− δ, tolerance ψk(δ), collection G of measurable subsets
of Sd−1

Standardization: Apply the rank-transformation, yielding

V̂i = T̂ (X1) =

(
1

1− F̂1(X
(1)
i )

, . . . ,
1

1− F̂d(X
(d)
i )

)
Thresholding: With t = n/k, extract the indexes

I =
{
i : r(V̂i ) ≥ n/k

}
=
{
i : ∃j ≤ d , F̂i (X

(j)
i ) ≥ 1− k/n

}
and consider the population of angles {θi = θ(V̂i ), i ∈ I}
Empirical MV-set estimation: Form Φ̂n,k = (1/k)

∑
i∈I δθi and solve

min
Ω∈G

λd(Ω) subject to Φ̂n,k(Ω) ≥ α− ψk(δ)

Output: Empirical MV-set Ω̂α
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Theoretical guarantees - Assumptions

• For any t > 1, Φt(dθ) = φt(θ) · λd(dθ) and ∀c > 0

P{φt(θ(V)) = c} = 0

• supt>1θ∈Sd−1
φt(θ) <∞

Under these assumptions, the MV set problem at level α has a unique
solution

B∗α,t = {θ ∈ Sd−1 : φt(θ) ≥ K−1
Φt

(Φ(Sd−1)− α)},

where KΦt (y) = Φt({θ ∈ Sd−1 : φt(θ) ≤ y}).

If the continuity assumption is not fulfilled?
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Dimensionality reduction in the extremes

• Reasonable hope: only a moderate number of Vj ’s may be
simultaneously large → sparse angular measure

• In Clémençon, Goix and Sabourin (JMVA, 2017):

Estimation of the (sparse) support of the angular measure
(i.e. the dependence structure).

Which components may be large together, while the other are small?

• Recover the asymptotically dependent groups of components → apply
empirical MV-set estimation on the sphere to these groups/subvectors.
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It cannot rain everywhere at the same time

(daily precipitation)

(air pollutants)
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Recovering the (hopefully) sparse angular support

Full support: Sparse support
anything may happen (V1 not large if V2 or V3 large)

Where is the mass?

Subcones of Rd
+ : Cα = {x � 0, xi ≥ 0 (i ∈ α), xj = 0 (j /∈ α), ‖x‖ ≥ 1}

α ⊂ {1, . . . , d}.
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Support recovery + representation

• {Ωα, α ⊂ {1, . . . , d}: partition of the unit sphere

• {Cα, α ⊂ {1, . . . , d}: corresponding partition of {x : ‖x‖ ≥ 1}
• µ-mass of subcone Cα: M(α) (unknown)

• Goal: learn the 2d − 1-dimensional representation (potentially sparse)

M =
(
M(α)

)
α⊂{1,...,d},α 6=∅

• M(α) > 0 ⇐⇒
features j ∈ α may be large together while the others are small.

32/1



Sparsity in real datasets
Data=50 wave direction from buoys in North sea.
(Shell Research, thanks J. Wadsworth)
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Theoretical guarantees - Results

Theorem

Suppose G is of finite VC dimension VG and set

ψk(δ) =

√
d

k

{
2
√
VG log(dk + 1) + 3

√
log(1/δ)

}
.

Then, with probability at least 1− δ, we have:

Φn/k(Ω̂α) ≥ α− 2ψk(δ) and λd(Ω̂α) ≤ inf
Ω∈G,Φ(Ω)≥α

λd(Ω)

• The learning rate is of order OP(
√

(log k)/k)

• Main tool: VC inequality for small probability classes (Goix,
Sabourin & Clémençon 2015)

• The rank transformation does not damage the rate

• Oracle inequalities for model selection (choice of G) by additive
complexity penalization can be straightforwardly derived
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Example: paving the sphere

• Let J ≥ 1. Consider the partition of Sd−1 made of J = dJd−1

’hypecubes’ of same volume

• The class GJ is made of all possible unions of such hypercubes Sj ,
|GJ | = exp(dJd−1 log 2)
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Example: paving the sphere

Algorithm

1. Sort the Sj ’s so that

Φ̂n,k(S(1)) ≥ . . . ≥ Φ̂n,k(S(J ))

2. Bind together the subsets with largest mass

Ω̂J,α =

J (α)⋃
j=1

S(j),

where J (α) = min{j ≥ 1 :
∑j

l=1 Φ̂n,k(S(j)) ≥ α− ψk(δ)}
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Application to Anomaly Detection

Anomalies correspond to observations

with directions lying in a region where the angular density takes low
values

or

with very large sup norm

⇒ abnormal regions are of the form

{(r , θ) : φ(θ)/r2 ≤ s0}

Define ŝ((r(V), θ(V)) = (1/r(V)2)ŝθ(θ(V)), where

ŝθ(θ) =
J∑
j=1

Φ̂n,k(Sj)I{θ ∈ Sj}
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Preliminary Numerical Experiments

UCI machine learning repository
First results on real datasets are encouraging

Table: ROC-AUC

Data set OCSVM Isolation Forest Score ŝ

shuttle 0.981 0.963 0.987
SF 0.478 0.251 0.660

http 0.997 0.662 0.964
ann 0.372 0.610 0.518

forestcover 0.540 0.516 0.646

38/1



References

• N. Goix, A. Sabourin, S. Clémençon. Learning the dependence
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