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Motivation - Context

Era of Data - Ubiquity of sensors
ex: an aircraft engine can equipped with more than 2000 sensors
monitoring its functioning (pressure, temperature, vibrations, etc.)

Very high dimensional setting: traditional survival analysis is
inappropriate for predictive maintenance

Health monitoring: avoid failures via early detection of abnormal
behavior of a complex infrastructure

The vast majority of the data are unlabeled
Rarity should replace labels...

Anomalies correspond to multivariate extreme observations,
but the reverse is not true in general

False alarms are very expensive and should be interpretable by
professional experts
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The many faces of Anomaly Detection

Anomaly: "an observation which deviates so much from other

observations as to arouse suspicions that it was generated by a different
mechanism (Hawkins 1980)"

What is Anomaly Detection ?

"Finding patterns in the data that do not conform to expected behavior”
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Learning how to detect anomalies automatically

e Step 1: Based on training data, learn a region in the space of
observations describing the "normal” behavior

e Step 2: Detect anomalies among new observations.
Anomalies are observations lying outside the critical region
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The many faces of Anomaly Detection

Different frameworks for Anomaly Detection

e Supervised AD
- Labels available for both normal data and anomalies
- Similar to rare class mining

e Semi-supervised AD
- Only normal data available to train
- The algorithm learns on normal data only

e Unsupervised AD
- no labels, training set = normal + abnormal data
- Assumption: anomalies are very rare
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Supervised Learning Framework for Anomaly Detection

(X, Y) random pair, valued in RY x {—1,+1} with d >> 1
A positive label 'Y = 41" is assigned to anomalies.

Observation: sample D, of i.i.d. copies of (X, Y)

(Xla Yl)a SRR (X,,, Yn)

Goal: from labeled data D, learn to predict labels assigned to new
data X7, ..., X/,

A typical binary classification problem...
except that p = P{Y = 41} may be extremely small
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The Flagship Machine-Learning Problem:
Supervised Binary Classification

e X € observation with dist. u(dx) and Y € {—1,+1} binary label
A posteriori probability ~ regression function

Vx eRY, p(x)=P{Y=1|X=x}

g :RY — {—1,+1} prediction rule - classifier

e Performance measure = classification error

Lig)=P{g(X)#Y} — min L(g)

Solution: Bayes classifier g*(x) = 2I{n(x) > 1/2} — 1
e Bayes error L* = L(g*) =1/2 — E[|2n(X) — 1]]/2
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Empirical Risk Minimization - Basics

Sample (X1, Y1), ..., (Xn, Yn) with i.i.d. copies of (X, Y)

Class G of classifiers of a given complexity

Empirical Risk Minimization principle

g, = argmin L
&n ggelg n(g)

: def
with La(g) = 530, I{g(X:) # Yi}
Mimic the best classifier among the class

g —argminlL
g = argmin (g)
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Guarantees - Empirical processes in classification

e Bias-variance decomposition

L(gn) — L < (L(&n) — Ln(&n)) + (Ln(&) — L(8)) + (L(&) — L7)

§2<sup|L (g) — L(g ) inf L(g —L*>
g€g gGQ

e Concentration results
With probability 1 — §:

2log(1/0)

sup | Lo(g) ~ L(g) < E !

geg

sup | Ln(g) — L(g) |] +
geg

10/1



Main results in classification theory

1. Bayes risk consistency and rate of convergence

Complexity control:

E <C

sup | Ln(g) — L(g) |

74
geg n

if G is a VC class with VC dimension V.

2. Fast rates of convergence

Under variance control: rate faster than n—1/2

3. Convex risk minimization: Boosting, SVM, Neural Nets, etc.

4. Oracle inequalities - Model selection
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Unsupervised anomaly detection
Xi,...,X, € RYi.id. realizations of unknown probability measure
u(dx) = f(x)A(dx)
e Anomalies are supposed to be rare events, located in the tail of the
distribution
a critical region should be defined as the complementary of a density
sublevel set
e Estimation of the region where the data are most concentrated: region
of minimum volume for a given probability content « close to 1
e M-estimation formulation

Minimum Volume set, o = 0.95 12/1



Minimum Volume set (MV set) - the Excess Mass approach

Definition [Einmahl & Mason, 1992]

e a € [0,1] (for anomaly detection « is close to 1)

C class of measurable sets

w(dx) unknown probability measure of the observations

A Lebesgue measure

Q(a) = arg rgeig{)\(C),IP’(X €C)>a}

For small values of «, one recovers the modes.

For large values:

e Samples that belong to the MV set will be considered as normal
e Samples that do not belong to the MV set will be considered as
anomalies
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Theoretical MV sets

Consider the following assumptions:

e The distribution p has a density f(x) w.r.t. X such that f(X) is
bounded,

e The distribution of the r.v. f(X) has no plateau, i.e.
P(f(X) = c) =0 for any ¢ > 0.

Under these hypotheses, there exists a unique MV set at level a:

Gi={xeRy: h(x)>t,}

is a density level set, t, is the quantile at level 1 — « of the r.v. h(X).
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MV set estimation
Goal: learn a MV set Q(«) from Xi,..., X,

h

Ta

{z,h(z) > 1.} : T

Empirical Risk Minimization paradigm: replace the unknown
distribution p by its statistical counterpart

1 n
Hn = " :%;; Ox;

and solve mingeg A(G) subject to 7in(G) > a — ¢p, where ¢, is some
tolerance level and G C C is a class of measurable subsets whose volume
can be computed/estimated (e.g. Monte Carlo).
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Connection with ERM, Scott & Nowak '06

e The approach is valid, provided G is simple enough, i.e. of controlled
complexity (e.g. finite VC dimension)

. %
sup [7in(G) — p(G)| < cy/ —
Geg n

e The approach is accurate, provided that G is rich enough, i.e.
contains a reasonable approximant of a MV set at level

e The tolerance level should be chosen of the same order as
supgeg |1n(G) — pu(G)|

e Model selection: Gy, ..., Gk = @1, ey @K
k=arg min {)‘(é\k) + 20k ¢ in(Gk) > a — ¢k}
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Statistical Methods

Plug-in techniques (fit a model for f(x))

e Turning unsupervised AD into binary classification

Histograms
e Decision trees
e SVM

Isolation Forest
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Unsupervised anomaly detection - Mass Volume curves

e Anomalies are the rare events, located in the low density regions

e Most unsupervised anomaly detection algorithms learn a scoring
function

s:xeRY—R
such that the smaller s(x) the more abnormal is the observation x.

e Ideal scoring functions: any increasing transform of the density h(x)

h

Anomalies ! {x,h(x) > 1} +  Anomalies x
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Mass Volume curve

X ~ h, scoring function s, t-level set of s: {x,s(x) > t}

e as(t) =P(s(X) > t) mass of the t-level set
e \s(t) = M{x,s(x) > t}) volume of t-the level set.

Mass Volume curve MV; of s(x) [Clémengon and Jakubowicz, 2013]:

t € R (as(t), As(t))
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Mass Volume curve

MV; also defined as the function
MV :a € (0,1) — )\s(as_l(a)) = M{x,s(x) > as_l(a)})

where a ! generalized inverse of as.

Property [Clémencon and Jakubowicz, 2013]

Let MV* be the MV curve of the underlying density h and assume that h
has no flat parts, then for all s with no flat parts,

Va € (0,1), MV*(a) < MV4(a)

The closer is MV, to MV* the better is s
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A MEVT Approach to Anomaly Detection

Main assumption:

Anomalies correspond to unusual simultaneous occurrence of extreme
values for specific variables.

State of the Art: experts/practicioners set thresholds by hand

Anomaly detection in ‘extreme’ data

'Extremes’ = points located in the tail of the distribution.
In Big Data samples, extremes can be observed with high probability
Learn statistically what ‘normal’ among extremes means?

Requirement: beyond interpretability and false alarm rate reduction, the
method should be insensitive to unit choices
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Multivariate EVT for Anomaly detection

e If ‘normal’ data are heavy tailed, there may be extreme normal data.

How to distinguish between large anomalies and normal extremes?

e Anomalies among extremes are those which direction X/||X||~ is
unusual.

Our proposal: critical regions should be complementary sets of

MV-sets of the angular measure, that describes the dependence
structure
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Multivariate extremes
e Random vectors X = (Xi,...,Xg,); X; >0

e Margins: X; ~ F;, 1 <j<d (continuous).

e Preliminary step: Standardization V; = T(X;) = 17Fjl(xj))
=PV, >v)=1

V"

e Goal : P{V € A}, A 'far from 0’ ?

vz V ‘

“Extremal region”

T (large) V1
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Fundamental assumption and consequences de Haan, Resnick, 70's, 80’s

Intuitively: P(V € tA) ~ 1P(V ¢ A)

Multivariate regular variation

= Vv
0¢A: tP < € A> —— u(A), u: Exponent measure
t t—oo

necessarily: 1(tA) = t711(A)  (Radial homogeneity)
— angular measure on the sphere : ®(B) = u{tB,t > 1}

General model for extremes

IP’(HVHZr; H‘J—HGB):FHD(B)

Polar coordinates: r(V) = ||V|], 8(V) = V/||V||
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Angular measure

e & rules the joint distribution of extremes

%) . \'%)

é A

Vi S i
e Asymptotic dependence: (V;, V2) may be large together.
Vs

e Asymptotic independence: only Vi or V, may be large.

No assumption on ®: non-parametric framework.
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MV-set estimation on the Sphere
Let Ay be Lebesgue measure on Sy_; Fix a € (0, 9(Sy—1)). Consider the
"asymptotic’ problem:

i Ad(€2) subject to ¢(2) > a.
Qegglsr;il) d(2) subject to () > «

Replace the limit measure by the sub-asymptotic angular measure at finite
level t:
d.(Q) = tP{r(V) > t,0(V) € Q}

We have 9,(Q2) — ®(Q) as t — oo. Replace the problem above by a non
asymptotic version:

min  Ag(€2) subject to ®:(Q2) > «.
Qo1 A(€) subject to 9¢(Q) >

The radius threshold t plays a role in the statistical method
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Algorithm - Empirical estimation of an angular MV-set
Inputs: Training data Xy, ..., X, k€ {1, ..., n}, mass level ,
confidence level 1 — ¢, tolerance ¥ (6), collection G of measurable subsets
of Sd,1

Standardization: Apply the rank-transformation, yielding

~ ~ 1 1
Vi=T(X) = _ ey —
(1 R - Fd(X,-(d)>>

Thresholding: With t = n/k, extract the indexes

T = {i: ME n/k} - {i: 3 <d, F(xY) > 1—k/n}

and consider the population of angles {0, = o(V), i € I}
Empirical MV-set estimation: Form @, = (1/k) ;.7 ds, and solve

gﬂg)\d(ﬂ) subject to <T>,,,k(Q) > a —1(6)
€

Output: Empirical MV-set fAZa
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Theoretical guarantees - Assumptions

e Forany t > 1, ®:(df) = ¢+(0) - Ay(df) and Vc > 0
P{g¢(0(V)) = c} =0

® SUP;siges, , Pe(f) < oo

Under these assumptions, the MV set problem at level o has a unique
solution

oc t = {0 € Sdg-1: ¢t(9) > Kq:tl(q)(Sd—l) - Oé)},
where Ko, (y) = ®:({0 € Sg_1: ¢:(0) < y}).

If the continuity assumption is not fulfilled?
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Dimensionality reduction in the extremes

e Reasonable hope: only a moderate number of V;'s may be
simultaneously large — sparse angular measure

e In Clémencon, Goix and Sabourin (JMVA, 2017):

Estimation of the (sparse) support of the angular measure
(i.e. the dependence structure).

Which components may be large together, while the other are small? |

e Recover the asymptotically dependent groups of components — apply
empirical MV-set estimation on the sphere to these groups/subvectors.
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It cannot rain everywhere at the same time
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Recovering the (hopefully) sparse angular support

Cigll Co
// 61,2
Full support: Sparse support
anything may happen (V4 not large if V5 or V3 large)
Where is the mass? )|

Subcones of Ri D Ca={x=0,x>0(i€ca), x;=0(¢a),|x| >1}
acC{l,...,d}.
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Support recovery + representation

C3 //k72,3

P .

{Qq,a C {1,...,d}: partition of the unit sphere

e {Co,aC{1,...,d}: corresponding partition of {x : ||x| > 1}
e p-mass of subcone Co: M(a) (unknown)
e Goal: learn the 29 — 1-dimensional representation (potentially sparse)
M = (M(a))
ac{l,...,d},a#0
e M(a) >0 «—

features j € a may be large together while the others are small.
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Sparsity in real datasets

Data=b50 wave direction from buoys in North sea.
(Shell Research, thanks J. Wadsworth)

dimensional repartition - non extreme data dimensional repartition - extreme data
00 (below threshold, infinity norm) 025 (above threshold, infinity norm)
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nb of faces with positive mass 2761 782
nb of faces with positive mass after thresholding 21 76
nb of faces with positive mass after 2™ thresholding 1 26
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Theoretical guarantees - Results

Theorem
Suppose G is of finite VC dimension Vg and set

i(6) = \/f {27/ Vglog(dk +1) + 3/log(1/0) }

Then, with probability at least 1 — §, we have:

Q) > o — Q)< i
q)n/k(Qa) e’ 21/);((5) and )\d(Qa) S Qeg,g](l;)za )\d(Q)

The learning rate is of order Op(+/(log k)/k)

Main tool: VC inequality for small probability classes (Goix,
Sabourin & Clémengon 2015)

The rank transformation does not damage the rate

Oracle inequalities for model selection (choice of G) by additive
complexity penalization can be straightforwardly derived
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Example: paving the sphere

e Let J > 1. Consider the partition of Sqy_; made of J = dJ9~1
'hypecubes’ of same volume

e The class G, is made of all possible unions of such hypercubes §;,
1G] = exp(dJ? " log 2)
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Example: paving the sphere

Algorithm
1. Sort the S;'s so that

®n(S1) = - = Sn k(i)
2. Bind together the subsets with largest mass

W@
Qo= U S
j=1

where J(a) = min{j > 1: 211'21 dA)n’k(SU)) > a—Yp(6)}
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Application to Anomaly Detection

Anomalies correspond to observations

with directions lying in a region where the angular density takes low
values

or

with very large sup norm

=- abnormal regions are of the form

{(r,0): ¢(8)/r* < so}
Define 5((r(V),0(V)) = (1/r(V)?)5y(8(V)), where

Mm

nk H{GGS}

)

.
I
—
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Preliminary Numerical Experiments

UCI machine learning repository
First results on real datasets are encouraging

Table: ROC-AUC

Data set OCSVM Isolation Forest Score §
shuttle 0.981 0.963 0.987
SF 0.478 0.251 0.660
http 0.997 0.662 0.964
ann 0.372 0.610 0.518
forestcover 0.540 0.516 0.646
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