Weak Signals: machine-learning meets extreme value theory

> Stephan Clémençon Télécom ParisTech, LTCI, Université Paris Saclay machinelearningforbigdata.telecom-paristech.fr

2017-11-29, Workshop on Machine Learning and FinTech



- Motivation Health monitoring in aeronautics
- Anomaly detection in the Big Data era: a statistical learning view
- Anomalies and extremal dependence structure: a MV-set approach
- Theory and practice
- Conclusion Lines of further research

# Motivation - Context

- Era of Data **Ubiquity of sensors** *ex*: an aircraft engine can equipped with more than 2000 sensors monitoring its functioning (pressure, temperature, vibrations, *etc.*)
- Very high dimensional setting: traditional survival analysis is inappropriate for predictive maintenance
- **Health monitoring**: avoid failures via early detection of abnormal behavior of a complex infrastructure
- The vast majority of the data are **unlabeled Rarity** should replace labels...

Anomalies correspond to **multivariate extreme** observations, but the reverse is not true in general

• False alarms are **very expensive** and should be **interpretable** by professional experts

# The many faces of Anomaly Detection

**Anomaly**: "an observation which deviates so much from other observations as to arouse suspicions that it was generated by a different mechanism (Hawkins 1980)"

## What is Anomaly Detection ?

"Finding patterns in the data that do not conform to expected behavior"



# Learning how to detect anomalies automatically



- Step 1: Based on training data, learn a region in the space of observations describing the "normal" behavior
- Step 2: Detect anomalies among new observations. Anomalies are observations lying outside the critical region

The many faces of Anomaly Detection

## **Different frameworks for Anomaly Detection**

- Supervised AD
  - Labels available for both normal data and anomalies
  - Similar to rare class mining

## • Semi-supervised AD

- Only normal data available to train
- The algorithm learns on normal data only

## Unsupervised AD

- no labels, training set = normal + abnormal data
- Assumption: anomalies are very rare

Supervised Learning Framework for Anomaly Detection

- (X, Y) random pair, valued in ℝ<sup>d</sup> × {-1, +1} with d >> 1 A positive label 'Y = +1' is assigned to anomalies.
- **Observation:** sample  $\mathcal{D}_n$  of i.i.d. copies of (X, Y)

$$(X_1, Y_1), \ldots, (X_n, Y_n)$$

- Goal: from labeled data  $\mathcal{D}_n$ , learn to **predict** labels assigned to new data  $X'_1, \ldots, X'_{n'}$
- A typical binary classification problem...
   except that p = P{Y = +1} may be extremely small

# The Flagship Machine-Learning Problem: Supervised Binary Classification

- $X\in$  observation with dist.  $\mu(dx)$  and  $Y\in\{-1,+1\}$  binary label
- A posteriori probability ~ regression function

$$\forall x \in \mathbb{R}^d, \quad \eta(x) = \mathbb{P}\{Y = 1 \mid X = x\}$$

- $g : \mathbb{R}^d \to \{-1, +1\}$  prediction rule classifier
- Performance measure = classification error

$$L(g) = \mathbb{P}\{g(X) \neq Y\} \quad \to \min_g L(g)$$

- Solution: Bayes classifier  $g^*(x) = 2\mathbb{I}\{\eta(x) > 1/2\} 1$
- Bayes error  $L^* = L(g^*) = 1/2 \mathbb{E}[|2\eta(X) 1|]/2$

## Empirical Risk Minimization - Basics

- Sample  $(X_1, Y_1), \ldots, (X_n, Y_n)$  with i.i.d. copies of (X, Y)
- Class  ${\mathcal G}$  of classifiers of a given  ${\mbox{ complexity}}$
- Empirical Risk Minimization principle

$$\hat{g}_n = rg\min_{g\in\mathcal{G}} L_n(g)$$

with 
$$L_n(g) \stackrel{\text{def}}{=} \frac{1}{n} \sum_{i=1}^n \mathbb{I}\{g(X_i) \neq Y_i\}$$

• Mimic the best classifier among the class

$$ar{g} = rg\min_{g\in\mathcal{G}}L(g)$$

## Guarantees - Empirical processes in classification

• Bias-variance decomposition

$$egin{aligned} &(\hat{g}_n)-L^* &\leq (L(\hat{g}_n)-L_n(\hat{g}_n))+(L_n(ar{g})-L(ar{g}))+(L(ar{g})-L^*)\ &\leq 2\left(\sup_{g\in\mathcal{G}}\mid L_n(g)-L(g)\mid
ight)+\left(\inf_{g\in\mathcal{G}}L(g)-L^*
ight) \end{aligned}$$

• Concentration results

L

With probability  $1 - \delta$ :

$$\sup_{g \in \mathcal{G}} \mid L_n(g) - L(g) \mid \leq \mathbb{E} \left[ \sup_{g \in \mathcal{G}} \mid L_n(g) - L(g) \mid \right] + \sqrt{\frac{2 \log(1/\delta)}{n}}$$

# Main results in classification theory

1. Bayes risk consistency and rate of convergence Complexity control:

$$\mathbb{E}\left[\sup_{g\in\mathcal{G}}\mid L_n(g)-L(g)\mid\right]\leq C\sqrt{\frac{V}{n}}$$

if  $\mathcal{G}$  is a VC class with VC dimension V.

2. Fast rates of convergence

Under variance control: rate faster than  $n^{-1/2}$ 

- 3. Convex risk minimization: Boosting, SVM, Neural Nets, etc.
- 4. Oracle inequalities Model selection

## Unsupervised anomaly detection

 $X_1, \ldots, X_n \in \mathbb{R}^d$  i.i.d. realizations of unknown probability measure  $\mu(dx) = f(x)\lambda(dx)$ 

• Anomalies are supposed to be rare events, located in the tail of the distribution

a critical region should be defined as the complementary of a **density** sublevel set

- Estimation of the region where the data are most concentrated: region of **minimum volume** for a given probability content  $\alpha$  close to 1
- *M*-estimation formulation



Minimum Volume set,  $\alpha = 0.95$ 

Minimum Volume set (MV set) - the Excess Mass approach

## Definition [Einmahl & Mason, 1992]

- $\alpha \in [0,1]$  (for anomaly detection  $\alpha$  is close to 1)
- $\mathcal C$  class of measurable sets
- $\mu(dx)$  unknown probability measure of the observations
- $\lambda$  Lebesgue measure

$$Q(\alpha) = \arg\min_{C \in \mathcal{C}} \{\lambda(C), \mathbb{P}(X \in C) \ge \alpha\}$$

- For small values of  $\alpha$ , one recovers the **modes**.
- For large values:
  - Samples that belong to the MV set will be considered as normal
  - Samples that do not belong to the MV set will be considered as **anomalies**

## Theoretical MV sets

Consider the following assumptions:

- The distribution  $\mu$  has a density f(x) w.r.t.  $\lambda$  such that f(X) is bounded,
- The distribution of the r.v. f(X) has no plateau, *i.e.*  $\mathbb{P}(f(X) = c) = 0$  for any c > 0.

Under these hypotheses, there exists a unique MV set at level  $\alpha$ :

$$G_{\alpha}^* = \{x \in \mathbb{R}^d : h(x) \ge t_{\alpha}\}$$

is a *density level set*,  $t_{\alpha}$  is the quantile at level  $1 - \alpha$  of the r.v. h(X).

## MV set estimation Goal: learn a MV set $Q(\alpha)$ from $X_1, \ldots, X_n$



**Empirical Risk Minimization paradigm:** replace the unknown distribution  $\mu$  by its statistical counterpart

$$\widehat{\mu}_n = \frac{1}{n} \sum_{i=1}^n \delta_{X_i}$$

and solve  $\min_{G \in \mathcal{G}} \lambda(G)$  subject to  $\widehat{\mu}_n(G) \ge \alpha - \phi_n$ , where  $\phi_n$  is some tolerance level and  $\mathcal{G} \subset \mathcal{C}$  is a class of measurable subsets whose volume can be computed/estimated (e.g. Monte Carlo).

## Connection with ERM, Scott & Nowak '06

• The approach is valid, provided  $\mathcal{G}$  is **simple enough**, *i.e.* of controlled complexity (*e.g.* finite VC dimension)

$$\sup_{G\in\mathcal{G}}|\widehat{\mu}_n(G)-\mu(G)|\leq c\sqrt{\frac{V}{n}}$$

- The approach is accurate, provided that  $\mathcal{G}$  is **rich enough**, *i.e.* contains a reasonable approximant of a MV set at level  $\alpha$
- The **tolerance level** should be chosen of the same order as  $\sup_{G \in \mathcal{G}} |\widehat{\mu}_n(G) \mu(G)|$
- Model selection:  $\mathcal{G}_1, \ \ldots, \ \mathcal{G}_K \Rightarrow \widehat{\mathcal{G}}_1, \ \ldots, \ \widehat{\mathcal{G}}_K$

$$\widehat{k} = \arg\min_{k} \left\{ \lambda(\widehat{G}_{k}) + 2\phi_{k} : \widehat{\mu}_{n}(\widehat{G}_{k}) \ge \alpha - \phi_{k} \right\}$$

# Statistical Methods

- Plug-in techniques (fit a model for f(x))
- Turning unsupervised AD into binary classification
- Histograms
- Decision trees
- SVM
- Isolation Forest

Unsupervised anomaly detection - Mass Volume curves

- Anomalies are the rare events, located in the low density regions
- Most unsupervised anomaly detection algorithms learn a scoring function

$$s: x \in \mathbb{R}^d \mapsto \mathbb{R}$$

such that the smaller s(x) the more abnormal is the observation x.

• Ideal scoring functions: any increasing transform of the density h(x)



## Mass Volume curve

 $X \sim h$ , scoring function *s*, *t*-level set of *s*:  $\{x, s(x) \geq t\}$ 

- $\alpha_s(t) = \mathbb{P}(s(X) \ge t)$  mass of the *t*-level set
- $\lambda_s(t) = \lambda(\{x, s(x) \ge t\})$  volume of *t*-the level set.

**Mass Volume curve**  $MV_s$  of s(x) [Clémençon and Jakubowicz, 2013]:

 $t \in \mathbb{R} \mapsto (\alpha_s(t), \lambda_s(t))$ 



## Mass Volume curve

 $\mathsf{MV}_{s}$  also defined as the function

 $\mathsf{MV}_{s}: \alpha \in (0,1) \mapsto \lambda_{s}(\alpha_{s}^{-1}(\alpha)) = \lambda(\{x, s(x) \ge \alpha_{s}^{-1}(\alpha)\})$ 

where  $\alpha_s^{-1}$  generalized inverse of  $\alpha_s$ .

## Property [Clémençon and Jakubowicz, 2013]

Let  $MV^*$  be the MV curve of the underlying density h and assume that h has no flat parts, then for all s with no flat parts,

 $\forall \alpha \in (0,1), \quad \mathsf{MV}^*(\alpha) \leq \mathsf{MV}_s(\alpha)$ 

#### The closer is $MV_s$ to $MV^*$ the better is s

A MEVT Approach to Anomaly Detection

## Main assumption:

Anomalies correspond to unusual simultaneous occurrence of extreme values for specific variables.

State of the Art: experts/practicioners set thresholds by hand

## Anomaly detection in 'extreme' data

'Extremes' = points located in the tail of the distribution. In Big Data samples, extremes can be observed with high probability **Learn** statistically what 'normal' among extremes means?

**Requirement:** beyond interpretability and false alarm rate reduction, the method should be insensitive to unit choices

# Multivariate EVT for Anomaly detection

• If 'normal' data are heavy tailed, there may be extreme normal data.

How to distinguish between large anomalies and normal extremes?

• Anomalies among extremes are those which direction  $X/||X||_{\infty}$  is unusual.

Our proposal: critical regions should be complementary sets of MV-sets of the **angular measure**, that describes the *dependence structure* 

## Multivariate extremes

- Random vectors  $\mathbf{X} = (X_1, \dots, X_{d,})$ ;  $X_j \ge 0$
- Margins:  $X_j \sim F_j$ ,  $1 \le j \le d$  (continuous).
- Preliminary step: Standardization  $V_j = T(X_j) = \frac{1}{1 F_j(X_j)}$  $\Rightarrow \mathbb{P}(V_j > v) = \frac{1}{v}.$

• Goal : 
$$\mathbb{P}\{\mathbf{V}\in A\}$$
, A 'far from 0' ?



Fundamental assumption and consequences de Haan, Resnick, 70's, 80's

Intuitively:  $\mathbb{P}(\mathbf{V} \in tA) \simeq \frac{1}{t}\mathbb{P}(\mathbf{V} \in A)$ 

Multivariate regular variation

$$0 \notin \overline{A}$$
:  $t \mathbb{P}\left(\frac{\mathbf{V}}{t} \in A\right) \xrightarrow[t \to \infty]{} \mu(A), \qquad \mu$ : Exponent measure

necessarily:  $\mu(tA) = t^{-1}\mu(A)$  (Radial homogeneity)  $\rightarrow$  angular measure on the sphere :  $\Phi(B) = \mu\{tB, t \ge 1\}$ 

#### General model for extremes

$$\mathbb{P}\left(\|\mathbf{V}\| \geq r; \quad \frac{\mathbf{V}}{\|\mathbf{V}\|} \in B\right) \simeq r^{-1} \Phi(B)$$

Polar coordinates:  $r(\mathbf{V}) = \|\mathbf{V}\|$ ,  $\theta(\mathbf{V}) = \mathbf{V}/\|\mathbf{V}\|$ 

# Angular measure

•  $\Phi$  rules the joint distribution of extremes



• Asymptotic dependence:  $(V_1, V_2)$  may be large together.

VS

• Asymptotic independence: only  $V_1$  or  $V_2$  may be large.

No assumption on  $\Phi$ : non-parametric framework.

## MV-set estimation on the Sphere

Let  $\lambda_d$  be Lebesgue measure on  $\mathbb{S}_{d-1}$  Fix  $\alpha \in (0, \Phi(\mathbb{S}_{d-1}))$ . Consider the 'asymptotic' problem:

$$\min_{\Omega \in \mathcal{B}(\mathbb{S}_{d-1})} \lambda_d(\Omega) \text{ subject to } \Phi(\Omega) \geq \alpha.$$

Replace the limit measure by the *sub-asymptotic* angular measure at finite level *t*:

$$\Phi_t(\Omega) = t \mathbb{P}\{r(\mathbf{V}) > t, \theta(\mathbf{V}) \in \Omega\}$$

We have  $\Phi_t(\Omega) \to \Phi(\Omega)$  as  $t \to \infty$ . Replace the problem above by a non asymptotic version:

$$\min_{\Omega \in \mathcal{B}(\mathbb{S}_{d-1})} \lambda_d(\Omega) \text{ subject to } \Phi_t(\Omega) \geq \alpha.$$

The radius threshold t plays a role in the statistical method

## Algorithm - Empirical estimation of an angular MV-set

**Inputs:** Training data  $X_1, \ldots, X_n$ ,  $k \in \{1, \ldots, n\}$ , mass level  $\alpha$ , confidence level  $1 - \delta$ , tolerance  $\psi_k(\delta)$ , collection  $\mathcal{G}$  of measurable subsets of  $\mathbb{S}_{d-1}$ 

Standardization: Apply the rank-transformation, yielding

$$\widehat{V}_i = \widehat{T}(X_1) = \left(rac{1}{1 - \widehat{F}_1(X_i^{(1)})}, \dots, rac{1}{1 - \widehat{F}_d(X_i^{(d)})}
ight)$$

**Thresholding:** With t = n/k, extract the indexes

$$\mathcal{I} = \left\{i: r(\widehat{V}_i) \ge n/k\right\} = \left\{i: \exists j \le d, \ \widehat{F}_i(X_i^{(j)}) \ge 1 - k/n\right\}$$

and consider the population of angles  $\{\theta_i = \theta(\widehat{V}_i), i \in \mathcal{I}\}$ Empirical MV-set estimation: Form  $\widehat{\Phi}_{n,k} = (1/k) \sum_{i \in \mathcal{I}} \delta_{\theta_i}$  and solve

$$\min_{\Omega \in \mathcal{G}} \lambda_d(\Omega) \text{ subject to } \widehat{\Phi}_{n,k}(\Omega) \geq \alpha - \psi_k(\delta)$$

**Output:** Empirical MV-set  $\widehat{\Omega}_{\alpha}$ 

## Theoretical guarantees - Assumptions

• For any 
$$t > 1$$
,  $\Phi_t(d\theta) = \phi_t(\theta) \cdot \lambda_d(d\theta)$  and  $\forall c > 0$   
 $\mathbb{P}\{\phi_t(\theta(\mathbf{V})) = c\} = 0$ 

• 
$$\sup_{t>1\theta\in\mathbb{S}_{d-1}}\phi_t(\theta)<\infty$$

Under these assumptions, the MV set problem at level  $\boldsymbol{\alpha}$  has a unique solution

$$B_{\alpha,t}^* = \{\theta \in \mathbb{S}_{d-1} : \phi_t(\theta) \ge K_{\Phi_t}^{-1}(\Phi(\mathbb{S}_{d-1}) - \alpha)\},\$$

where  $K_{\Phi_t}(y) = \Phi_t(\{\theta \in \mathbb{S}_{d-1} : \phi_t(\theta) \le y\}).$ 

If the continuity assumption is not fulfilled?

## Dimensionality reduction in the extremes

- Reasonable hope: only a moderate number of V<sub>j</sub>'s may be simultaneously large → sparse angular measure
- In Clémençon, Goix and Sabourin (JMVA, 2017):

**Estimation of the (sparse) support** of the angular measure (*i.e.* the dependence structure).

Which components may be large together, while the other are small?

• Recover the asymptotically dependent groups of components  $\rightarrow$  apply empirical MV-set estimation on the sphere to these groups/subvectors.

## It cannot rain everywhere at the same time



# Recovering the (hopefully) sparse angular support



Subcones of  $\mathbb{R}^d_+$ :  $\mathcal{C}_{\alpha} = \{x \succeq 0, x_i \ge 0 \ (i \in \alpha), x_j = 0 \ (j \notin \alpha), \|x\| \ge 1\}$  $\alpha \subset \{1, \ldots, d\}.$ 

## Support recovery + representation



- $\{\Omega_{lpha}, lpha \subset \{1, \ldots, d\}$ : partition of the unit sphere
- $\{C_{\alpha}, \alpha \subset \{1, \dots, d\}$ : corresponding partition of  $\{x : \|x\| \ge 1\}$
- $\mu$ -mass of subcone  $C_{\alpha}$ :  $\mathcal{M}(\alpha)$  (unknown)
- Goal: learn the  $2^d 1$ -dimensional representation (potentially sparse)

$$\mathcal{M} = \left(\mathcal{M}(\alpha)\right)_{\alpha \subset \{1, \dots, d\}, \alpha \neq \emptyset}$$

M(α) > 0 ⇐⇒
 features j ∈ α may be large together while the others are small.

# Sparsity in real datasets

# Data=50 wave direction from buoys in North sea. (Shell Research, thanks J. Wadsworth)



# Theoretical guarantees - Results

## Theorem

Suppose  ${\mathcal G}$  is of finite  ${\rm VC}$  dimension  ${\it V}_{{\mathcal G}}$  and set

$$\psi_k(\delta) = \sqrt{\frac{d}{k}} \left\{ 2\sqrt{V_{\mathcal{G}}\log(dk+1)} + 3\sqrt{\log(1/\delta)} \right\}.$$

Then, with probability at least  $1 - \delta$ , we have:

$$\Phi_{n/k}(\widehat{\Omega}_{lpha}) \geq lpha - 2\psi_k(\delta) \text{ and } \lambda_d(\widehat{\Omega}_{lpha}) \leq \inf_{\Omega \in \mathcal{G}, \Phi(\Omega) \geq lpha} \lambda_d(\Omega)$$

- The learning rate is of order  $O_{\mathbb{P}}(\sqrt{(\log k)/k})$
- Main tool: VC inequality for small probability classes (Goix, Sabourin & Clémençon 2015)
- The rank transformation does not damage the rate
- Oracle inequalities for **model selection** (choice of *G*) by additive complexity penalization can be straightforwardly derived

## Example: paving the sphere

• Let  $J \ge 1$ . Consider the partition of  $\mathbb{S}_{d-1}$  made of  $\mathcal{J} = dJ^{d-1}$ 'hypecubes' of same volume



• The class  $\mathcal{G}_J$  is made of all possible unions of such hypercubes  $S_j$ ,  $|\mathcal{G}_J| = \exp(dJ^{d-1}\log 2)$  Example: paving the sphere

## Algorithm

1. Sort the  $S_j$ 's so that

$$\widehat{\Phi}_{n,k}(S_{(1)}) \geq \ldots \geq \widehat{\Phi}_{n,k}(S_{(\mathcal{J})})$$

2. Bind together the subsets with largest mass

$$\widehat{\Omega}_{J,\alpha} = \bigcup_{j=1}^{\mathcal{J}(\alpha)} S_{(j)},$$

where  $\mathcal{J}(\alpha) = \min\{j \ge 1 : \sum_{l=1}^{j} \widehat{\Phi}_{n,k}(S_{(j)}) \ge \alpha - \psi_k(\delta)\}$ 

# Application to Anomaly Detection

Anomalies correspond to observations

# with directions lying in a region where the angular density takes low values

or

#### with very large sup norm

 $\Rightarrow$  abnormal regions are of the form

$$\{(r,\theta): \phi(\theta)/r^2 \leq s_0\}$$

Define  $\widehat{s}((r(\mathbf{V}), \theta(\mathbf{V})) = (1/r(\mathbf{V})^2)\widehat{s}_{\theta}(\theta(\mathbf{V}))$ , where

$$\widehat{s}_{ heta}( heta) = \sum_{j=1}^{\mathcal{J}} \widehat{\Phi}_{n,k}(S_j) \mathbb{I}\{ heta \in S_j\}$$

# Preliminary Numerical Experiments

UCI machine learning repository First results on real datasets are encouraging

#### Table: ROC-AUC

| Data set    | OCSVM | Isolation Forest | Score $\hat{s}$ |
|-------------|-------|------------------|-----------------|
|             |       |                  |                 |
| shuttle     | 0.981 | 0.963            | 0.987           |
| SF          | 0.478 | 0.251            | 0.660           |
| http        | 0.997 | 0.662            | 0.964           |
| ann         | 0.372 | 0.610            | 0.518           |
| forestcover | 0.540 | 0.516            | 0.646           |

## References

- N. Goix, A. Sabourin, S. Clémençon. Learning the dependence structure of rare events: a non-asymptotic study, COLT 2015
- N. Goix, A. Sabourin, S. Clémençon. Sparse representations of multivariate extremes with applications to anomaly detection, JMVA 2017
- S. Clémençon and A. Thomas. Mass Volume Curves and Anomaly Ranking. Preprint, https://arxiv.org/abs/1705.01305.
- A. Thomas, S. Clémençon, A. Gramfort, and A. Sabourin. Anomaly Detection in Extreme Regions via Empirical MV-sets on the Sphere. In AISTATS 2017
- A. Sabourin, S. Clémençon. Nonasymptotic bounds for empirical estimates of the angular measure of multivariate extremes. Preprint