Latest Advances in

Reinforcement Learning

Johann Lussange, Boris Gutkin

École Normale Supérieure, Paris

5th NUS-USPC Workshop on Machine Learning & Fintech

29-30 November 2017, University Paris Diderot

Contents

Overview of ML

Introduction to RL

Technology Intelligence

Conclusion

ML paradigms

- Supervised learning: mapping inference from a labelled training data set of input-output pairs
- 2. Unsupervised learning: mapping inference from unlabelled data set to its pattern/structure discovery (anomaly detection, PCA...)
- **3. Reinforcement learning**: action inference from trial & error in a given environment to maximize an ultimate given reward (c.f. model-based RL, model-free RL)
- 4. Multi-Agent Systems (MAS): several agents learning a same task together perform better than one, c.f. evolutionary algorithms, asynchronous methods, Multi-Agent Learning (MAL), etc.

Fintech & disruption

- Next hot topics:
 - 1. Unsupervised learning, maths research
 - 2. Long-term dependencies, memory networks
 - 3. Multi-Task Learning (MTL), generalizing quickly from few inputs
 - 4. Natural Language Processing (NLP), understanding & reasoning
 - 5. Deep Reinforcement Learning (DQN)
- Next obstacles:
 - Training & testing over enough data, e.g. ImageNet
 - Memory & planning, e.g. Monte Carlo Tree Search (MCTS)
 - Scalability & adaptability, e.g. physics & ML
 - Bio correspondence, synaptic connectivity half of human genome

Overview of ML

Introduction to RL

Technology Intelligence

Conclusion

Decision theory

- Origin: RL derived from *decision theory*, which studies the reasoning leading to an agent's choices: rational or irrational, active or passive (e.g. pavlovian), with bounded rationality (c.f. game theory, finance)
- Example: Perhaps our 'programming' is not embedded with supervised crawling but simply with a reward for movement?

RL inputs

- States s∈S: modelling the part of the agent's environment it cannot control, potentially incl. parts of its physical integrity (e.g. sensors, skeleton) or reward system (e.g. battery, stomach).
- Actions a∈A: modelling basic low-level controls (e.g. applying a voltage) to high-level decisions (e.g. going to college).
- Rewards r∈ R: modelling rewards as (negative or positive) scalars, using an extra time-discounting parameter 0<γ≤1 to define return.

Reinforcement

- Iteration: The agent monitors its environment signal s_t, and takes accordingly an action a_t so as to maximize the return R_t.
- Question: how does it know which action to take? Via a form of trial & error to infer a mapping from states to rewards (modelbased RL), or states-actions pairs to rewards (model-free RL).
- Exploration vs. exploitation: the goal of an agent is to *exploit* its policy, but it must first *explore* to find it (e.g. finding restaurant).

MDP

• MDP: Like most other ML approaches, RL assumes *Markov state signals*, i.e. the best policy for choosing actions as a function of a Markov state is just as good as the best policy for choosing actions as a function of complete histories.

$$\Pr\{s_{t+1} = s', r_{t+1} = r' \mid s_t, a_t\}$$

$$= \Pr\{s_{t+1} = s', r_{t+1} = r' \mid s_t, a_t, r_t, s_{t-1}, a_{t-1}, r_{t-1}, \dots, s_1, a_1, r_1, s_0, a_0\}$$

- Non-stationarity: challenging frameworks when stochastic, uncertain, game theoretic, etc... => c.f. issue of classical N-arm bandit with static vs. dynamic distribution
- POMDP: not always possible to know state s_{t+1} after action a_t => but RL requires full observability & states must be history-independent => POMDP methods.

RL functions

Policy	$\pi_t(s,a) = \Pr\{a_t = a s_t = s\}$
Transition probability	$\mathcal{P}^{a}_{ss'} = \Pr\{s_{t+1} = s' \mid s_t = s, a_t = a\}$
Expected value	$\mathcal{R}^{a}_{ss'} = \mathbb{E}\{r_{t+1} \mid s_t = s, a_t = a, s_{t+1} = s'\}$
State-value function	$V(s) = \mathbb{E}\left[\sum_{k=0}^{\infty} \gamma^k r_{t+k+1} \mid s_t = s\right]$
Action-value function	$Q(s,a) = \mathbb{E}\left[\sum_{k=0}^{\infty} \gamma^k r_{t+k+1} \mid s_t = s, a_t = a\right]$
Update rule (<i>example</i>)	$V(s) \leftarrow V(s) + \alpha \left[V(s') - V(s)\right]$
Model-based RL (critic)	$: \mathcal{P}, \mathcal{R} \rightarrow V \rightarrow \pi \rightarrow \mathcal{P}, \mathcal{R} \dots$
Model-free RL (critic):	$Q \rightarrow \pi \rightarrow Q \rightarrow \dots$
Policy search RL (actor)	$\pi \rightarrow \dots$

RL families

- **Model-based RL**: Dynamic Programming (DP) methods, c.f. Bellman's equations => assumes finite MDP.
- Model-free RL: Monte Carlo (MC) & Temporal Difference (TD) methods^[1], which can be unified with *eligibility traces*, c.f. TD(λ) methods, esp. TD(0) methods & Q-learning => assumes non-finite MDP.
- Actor-Critic RL: Policy gradient reinforcement learning, c.f. Finite-Difference Methods, Likelihood Ratio Methods, etc.

[1] Schultz, W., Dayan, P. & Montague, P. R. A neural substrate of prediction and reward. Science 275, 1593–1599 (1997).

Features (i)

Feature #1: Exploration & exploitation

- Methods: Each action a depends on how good the policy π(s,a), so when should the agent explore new policies & exploit already found policies? Methods of *ε-greedy, softmax, pursuit, on/off-policy learning*, etc...
- GPI: The goal is to achieve *convergence* to optimal policy π*(s,a) via *Generalized Policy Iteration* (GPI) theorem^[2], by doing a policy evaluation (i.e *prediction problem*) and then policy improvement (i.e *control problem*) repeatedly unto convergence to Q* and π*.

$$E(\pi_0) = I(V^{\pi_0}) = E(\pi_1) = I(V^{\pi_1}) = E(\pi_2) = \dots = E(\pi^*) = V^*$$

^[2] R. S. Sutton and A. G. Barto, "Reinforcement Learning: An Introduction", MIT Press, Cambridge, MA, A Bradford Book (1998)

Features (ii)

Feature #2: Curse of dimensionality

- **Continuous v.s. discrete**: Since RL works with (s,a) or (s,a,r), the exploration becomes quickly intractable in real-world applications.
- Function Approximation: Major breakthrough historically reached with Watkin's Q-learning^[3], links to Artificial Neural Networks, and especially Deep Reinforcement Learning.
- Action space: one can consider the action set space also from a tree perspective, c.f. hierarchical RL, MCTS.
- **Models**: model-based RL (planning methods to model *S*), model-free RL (learning methods to model $S \times A$)

^[3] C. J. Watkins, Learning from delayed rewards, PhD thesis, Kings College, Cambridge (1989)

Features (iii)

Feature #3: Temporal credit assignment problem

- **Core RL theory**: one should only define the final reward (what to achieve), never the intermediary rewards (how to achieve), c.f. chess, c.f. *shaping rewards, homeostatic RL*.
- Delayed reward: bio correspondence taking into account utility via time-discounting parameter 0<γ≤1 to define return, c.f. economic utility & Saint-Petersburg paradox.
- **Regret**: difference between optimal return and actual return.

Contents

Overview of ML

Introduction to RL

Technology Intelligence

Conclusion

Technology intelligence

RL features v.s. research fields:

- 1. Exploration-exploitation => policy learning
- 2. Dimensionality => state representation
- **3.** Temporal credit => modular/hierarchical RL, inverse RL, homeostasis

Policy learning (i)

Direct policy search: maximizing the return by searching the subset of policy space (c.f. stochastic optimization problem), while traditional value function approximation derives policies from the value function (requiring more parameters)

- Policy gradient-free methods
- Policy gradient methods: optimizing a parametrized control policy with respect to the return by gradient descent
 - Finite-Difference Methods
 - Likelihood Ratio Methods /REINFORCE
 - Natural Policy Gradients, Stochastic Policy Gradients, Deterministic Policy Gradients^[4] (operating over continuous action spaces, e.g. pole balance, robotics).

Policy learning (ii)

- **Transfer RL**: transferring experience gathered from one task to another task^[5].
- Imitation RL: learning a task from observing another agent.
- Self-play RL & Multi-Agent Learning (MAL): agent policy learnt by playing^[6] against another agent which also learns, e.g. game theoretic framework, TD-Gammon, AlphaGo.
- **Multitask/asynchronous RL**: multitask RL is learning multiple tasks & exploiting their similarity to improve single-task learning performance. Asynchronous RL^[7] executes in parallel many instances of an agent while using a shared model, thus obtaining data diversification, c.f. DeepMind's A3C asynchronous DL method for Atari games.
- **Modular RL**: dividing task into smaller subtasks that individually learn their own policy by RL, and then constructing a global policy by combining them all, in general via a centralized arbitrator^[8].

[5] A. Lazaric "Transfer in RL: A Framework and a Survey", Springer (2012)

[6] J. Heinrich & D. Silver, "Deep RL from Self-Play in Imperfect-Information Games" (2016)

[7] V. Mnih et al., "Asynchronous Methods for Deep Reinforcement Learning" (2016)

[8] J. Andreas et al. "Modular Multitask Reinforcement Learning with Policy Sketches" (2017)

Policy learning (iii)

- Lifelong RL: learning multiple consecutive tasks sequentially^[9], c.f. issues of forgetting outliers, remembering efficient information.
- **Multi-step RL**: unifying according to a parameter different RL methods that are part of a given family^[10], e.g. unifying TD methods like Sarsa, Q-learning, and Expected Sarsa.
- Actor-critic: Critic-only (or value-based) methods estimate the value function while the policy is implicit, while actor-only (or policy-based) methods estimate the policy function without the value function. Actor-critic methods learn the value function in order to then update the policy, c.f. GPI theorem.

^[9] C. Tessler et al. "A Deep Hierarchical Approach to Lifelong Learning in Minecraft" (2016)

^[10] De Asis et al. "Multi-step Reinforcement Learning: A Unifying Algorithm" (2017)

State representation (i)

- End-to-end & Deep RL: ANN trained via an RL approach, allowing the DQN to learn policies directly from high-dimensional input, e.g. Atari games^[11], later on coupling it with MCTS, e.g. AlphaGo^[12], poker^[13]
- Adversarial RL: huge gap between simulation to real world RL because of generalization failure & data scarcity => modelling uncertainties via an adversarial agent that applies perturbation to the system, potentially learning to efficiently do that by RL^[14]

^[11] V. Mnih et al. "Human-level control through deep reinforcement learning" (2015)

^[12] D. Silver et al. "Mastering the game of Go with deep neural networks and tree search" (2016)

^[13] J. Heinrich "Smooth UCT Search in Computer Poker" (2015)

^[14] L. Pinto et al. "Robust Adversarial Reinforcement Learning" (2017)

State representation (ii)

Uncertain/Partial/Biased information: MDPs assume the agent knows the complete state of the environment, which is highly unrealistic (e.g. robot within a room)

- POMDPs (Partially Observable MDP) models: specifying a function from the hidden state to the observables, by finding a mapping from observations (or an MDP constructed belief state, but not real state!) to actions => difficult to construct.
- BA-POMDPs (Bayes Adaptive POMDP) models: learning this POMDP model during execution via a Bayesian approach^[15] => intractable in nontrivial domains
- **BA-POMCP (Bayes-Adaptive Partially Observable Monte-Carlo Planning)**: extending Monte Carlo Tree Search (MCTS) to solve BA-POMDPs^[16].

[15] S. Ross et al. "A Bayesian Approach for Learning and Planning in Partially Observable Markov Decision Processes" (2011)

[16] S. Katt et al. "Learning in POMDPs with Monte Carlo Tree Search" (2017)

Credit assignment

- **Shaping rewards**: incorporating background knowledge on subrewards^[17] in order to improve convergence rates, e.g. robotics.
- **Hierarchical RL**: defining reward via temporal abstraction^[18].
- Homeostatic RL: defining reward as a manifold of several sub-rewards^[19], e.g. biological correspondence of temperature, water, food, etc.
- Inverse/apprenticeship RL: extracting reward function from observed optimal behaviour^[20].

- [18] K. Frans et al. "Meta Learning Shared Hierarchies" (2017)
- [19] M. Keramati & B. Gutkin "A Reinforcement Learning Theory for Homeostatic Regulation" (2011)

[20] *P. Abbeel, A. Coates, A. Ng, "Autonomous Helicopter Aerobatics through Apprenticeship Learning," vol. 29, Issue 13 IJRR (2010)*

^[17] A. Y. Ng et al. "Policy invariance under reward transformation: theory and application to reward shaping" (1999)

Contents

Overview of ML

Introduction to RL

Technology Intelligence

Conclusion

Conclusion

RL basics

- **RL inputs**: states S, actions A, rewards \mathcal{R}
- **RL types**: model-based, model-free, policy search
- **RL features**: exploration-exploitation, curse of dim., reward estimation

RL research

- Policy learning: policy-gradient methods, multi-task/asynchronous methods, MAL/self-play methods
- **State representation**: deep reinforcement learning, BA-POMDP models
- Credit assignment: modular/hierarchical RL, inverse RL, homeostatic RL

Conclusion

• Recent spectacular results simply mix methods within RL (eligibility traces, multi-step RL), or mix RL with other ML methods (DQN, A3C/MAL, MCTS)

Thank you for your attention