

Research Highlight:

Duality for Spherical Representations in Exceptional Theta Correspondences

Work of Professor LOKE Hung Yean, NUS and Professor Gordan SAVIN, University of Utah

Let *H* be a real split Lie group of type \mathbf{E}_n where n = 6, 7, 8.

If n = 6, we set $H = H^0 \rtimes \mathbb{Z}/2\mathbb{Z}$ where H^0 is the real points of a split, simply connected algebraic group, simply connected group of type E_6 . It contains a split dual pair $G \times G'$ is such that $G \cong SL_3(\mathbb{R}) \rtimes \mathbb{Z}/2\mathbb{Z}$ and G is of the type G_2 .

If n = 7 or 8, we set H to be the group of real points of a split, simply connected algebraic group of the type \mathbf{E}_n . The group H contains a split dual pair $G \times G'$ where G is of the type \mathbf{G}_2 , while G' is a simply connected group of the type \mathbf{C}_3 and \mathbf{F}_4 respectively.

Let \mathfrak{g} and \mathfrak{g}' be the Lie algebras of G and G'' respectively, and let K and K' be the maximal compact subgroups of G and G', respectively. Let \mathbf{V} be the Harish-Chandra module of the minimal representation of H. Let V be an irreducible (\mathfrak{g}, K) -module and V' be an irreducible (\mathfrak{g}', K') -module. We say that V and V' correspond if $V \otimes V'$ is a quotient of \mathbf{V} . Let V be an irreducible (\mathfrak{g}, K) -module. There is a (\mathfrak{g}', K') -module $\Theta(V)$ such that $\mathbf{V}/ \cap_{\phi} \ker \phi \simeq \Theta(V) \otimes V$

where the intersection is taken over all (\mathfrak{g}, K) -module homomorphisms $\phi : \mathbf{V} \to V$. Motivated by the classical dual pair correspondences, it is conjectured that $\Theta(V)$ is a finite length (\mathfrak{g}', K') -module with a unique irreducible quotient V', and then conversely, that $\Theta(V')$ is a finite length (\mathfrak{g}, K) -module with V as a unique irreducible quotient. We call this a *strong duality*.

Let λ and λ' denote the infinitesimal characters of V and V' respectively. It is known previously that there is an explicit correspondence of the infinitesimal characters. A spherical representation V of G is an irreducible representation in which $V^{K^{\circ}}$ is nonzero. It is a fact that a spherical representation is uniquely determined by its infinitesimal character. We let S_{λ} denote the spherical representation of G with infinitesimal character λ . Likewise we let $S_{\lambda'}$ to be the spherical representation of G' with infinitesimal character λ' .

Our first main result is that if $\Theta(S_{\lambda'}) \neq 0$ then it is a finite length (\mathfrak{g}, K) -module with the unique irreducible quotient isomorphic to S_{λ} . Here λ is the infinitesimal character corresponding to λ' .

Next suppose H is of the type \mathbf{E}_6 or \mathbf{E}_7 . As before let λ be the infinitesimal character corresponding to λ' . Then $\Theta(S_{\lambda'}) \neq 0$. In addition $\Theta(S_{\lambda})$ is a finite length (\mathfrak{g}', K') -module with the unique irreducible quotient isomorphic to $S_{\lambda'}$.

In summary we establish the strong duality for spherical representations in the split \mathbf{E}_6 and \mathbf{E}_7 cases, but only one for the dual pair in the split \mathbf{E}_8 case.

Reference:

H.Y. Loke, G. Savin, "Duality for spherical representations in exceptional theta correspondences". Transactions of the American Mathematical Society, 371, No. 9 (2019): 6359-6375