B.Sc. & B.Sc. (Hons) with Major in Applied Mathematics

Graduation Requirements for students admitted in AY2016/17

To be awarded a **B.Sc. or B.Sc.(Hons) with primary major in Applied Mathematics**, in addition to the University and Faculty requirements, a candidate must satisfy the following:

Module Level	Major Requirements	Level MCs	Cumulative Major MCs
1000	 Pass the 4 modules in <u>List I</u> Pass CS1010/CS1010E/CS1010S/CS1010X/CS1101S* Programming Methodology 	20 (^16)	20 (^16)
	*CS1101S (5MCs) may be read as an alternative to CS1010% (4MCs) to facilitate relevant programmes, e.g. Double Degree Programme with School of Computing. Registration for this module is subject to host availability.		
2000	 Pass all the following modules: MA2101/MA2101S Linear Algebra II MA2108/MA2108S Mathematical Analysis I MA2213 Numerical Analysis I MA2216/ST2131 Probability Pass one additional module from <u>List II</u>, <u>III</u>, <u>IV</u> 	20- <mark>23</mark> (^24-27)	40-43
3000	 5. Pass all the following modules: MA3110/MA3110S Mathematical Analysis II MA3111/MA3111S Complex Analysis I 6. Pass two modules from List AM3 7. Pass one additional module from List III, IV 	20-23	60-66
4000	 8. Pass MA4199 Honours Project in Mathematics 9. Pass four modules from List AM4 10. Pass one additional module from List IV 	32-33	92-98
UROPS	At most one Mathematics UROPS module may be used to fulfil the requirements of Major in Applied Mathematics		

To be awarded a **B.Sc.(Hons.) with primary major in Applied Mathematics with Specialisation in Mathematical Modelling and Data Analytics**, in addition to the University and Faculty requirements, a candidate must satisfy the following:

Module Level	Major Requirements	Level MCs	Cumulative Major MCs
1000	 Pass the 4 modules in <u>List I</u> Pass CS1010/CS1010E/CS1010S/CS1010X/CS1101S* Programming Methodology 	20 (^16)	20 (^16)
	*CS1101S (5MCs) may be read as an alternative to CS1010% (4MCs) to facilitate relevant programmes, e.g. Double Degree Programme with School of Computing. Registration for this module is subject to host availability.		
2000	 Pass all the following modules: MA2101/MA2101S Linear Algebra II MA2108/MA2108S Mathematical Analysis I MA2213 Numerical Analysis I MA2216/ST2131 Probability Pass one additional module from <u>List II</u>, <u>III</u>, <u>IV</u> 	20-23 (^24-27)	40-43
3000	 5. Pass all the following modules: MA3110/MA3110S Mathematical Analysis II MA3111/MA3111S Complex Analysis I 6. Pass two modules from List AM3-MMDA 7. Pass one additional module from List III, IV 	20-23	60-66
4000	 8. Pass MA4199 Honours Project in Mathematics 9. Pass four modules from List <u>AM4-MMDA</u> 10. Pass one additional module from <u>List IV</u> 	32-33	92-98
UROPS	At most one Mathematics UROPS module may be used to fulfil the requirements of Major in Applied Mathematics		

To be awarded a **B.Sc.(Hons.) with primary major in Applied Mathematics with Specialisation in Operations Research and Financial Mathematics**, in addition to the University and Faculty requirements, a candidate must satisfy the following:

Module Level	Major Requirements	Level MCs	Cumulative Major MCs
1000	 Pass the 4 modules in <u>List I</u> Pass CS1010/CS1010E/CS1010S/CS1010X/CS1101S* Programming Methodology 	20 (^16)	20 (^16)
	*CS1101S (5MCs) may be read as an alternative to CS1010% (4MCs) to facilitate relevant programmes, e.g. Double Degree Programme with School of Computing. Registration for this module is subject to host availability.		
2000	 Pass all the following modules: MA2101/MA2101S Linear Algebra II MA2108/MA2108S Mathematical Analysis I MA2213 Numerical Analysis I MA2216/ST2131 Probability Pass one additional module from <u>List II</u>, <u>III</u>, <u>IV</u> 	20- <mark>23</mark> (^24-27)	40-43
3000	 5. Pass all the following modules: MA3110/MA3110S Mathematical Analysis II MA3111/MA3111S Complex Analysis I 6. Pass two modules from List AM3-ORFM 7. Pass one additional module from List III, IV 	20-23	60-66
4000	 8. Pass MA4199 Honours Project in Mathematics 9. Pass four modules from List <u>AM4-ORFM</u> 10. Pass one additional module from <u>List IV</u> 	32-33	92-98
UROPS	At most one Mathematics UROPS module may be used to fulf Major in Applied Mathematics	il the requi	rements of

List I

- MA1100 Fundamental Concepts of Mathematics or CS1231 Discrete Structures
- MA1101R Linear Algebra I
- MA1102R Calculus
- MA1104/MA2104^ Multivariable Calculus

List II

- All MA modules at level 2000, except those coded MA23XX
- PC2130 Quantum Mechanics I
- PC2132 Classical Mechanics
- ST2132 Mathematical Statistics
- EC2101 Microeconomic Analysis I

List III

- All MA modules at level 3000, except MA3311 and MA3312
- BSE3703 Econometrics for Business I
- CS3230 Design & Analysis of Algorithms
- CS3234 Logic and Formal Systems
- CS4232 Theory of Computation
- DSA3102 Essential Data Analytics Tools: Convex Optimisation
- EC3101 Microeconomic Analysis II
- EC3303 Econometrics I
- PC3130 Quantum Mechanics II
- PC3236 Computational Methods in Physics
- PC3238 Fluid Dynamics
- ST3131 Regression Analysis
- ST3236 Stochastic Processes I

List IV

- All MA modules at level 4000 or higher
- CS4232 Theory of Computation
- CS4234 Optimisation Algorithms
- CS4236 Cryptography Theory and Practice
- CS5230 Computational Complexity
- CS5237 Computational Geometry and Applications
- DSA4211 High-Dimensional Statistical Analysis
- DSA4212 Optimisation for Large-Scale Data-Driven Inference
- EC4301 Microeconomic Analysis III
- EC5104/EC5104R Mathematical Economics
- PC4248 Relativity
- PC4274 Mathematical Methods in Physics III
- ST4238 Stochastic Processes II
- ST4245 Statistical Methods for Finance

List AM3

List AM3 consists of the following 3 baskets AM3-General, AM3-MMDA, AM3-ORFM.

AM3-General

- MA3209 Mathematical Analysis III
- MA3218 Applied Algebra
- MA3220 Ordinary Differential Equations

AM3-MMDA

- MA3227 Numerical Analysis II
- MA3233 Combinatorics and Graph II
- MA3264 Mathematical Modelling
- ST3131 Regression Analysis

AM3-ORFM

- MA3236 Nonlinear Programming
- MA3252 Linear and Network Optimization
- MA3269 Mathematical Finance I
- ST3131 Regression Analysis

List AM4

List AM4 consists of the following 3 baskets AM4-General, AM4-MMDA, AM4-ORFM.

AM4-General

- MA4211 Functional Analysis
- MA4221 Partial Differential Equations
- MA4235 Topics in Graph Theory
- MA4261 Coding and Cryptography

AM4-MMDA

- MA4229 Approximation Theory
- MA4230 Matrix Computation
- MA4255 Numerical Methods in Differential Equations
- MA4268 Mathematics for Visual Data Processing
- MA4270 Data Modelling and Computation
- MA4272 Mathematical Tools for Data Science
- DSA4211 High-Dimensional Statistical Analysis

AM4-ORFM

- MA4254 Discrete Optimization
- MA4260 Stochastic Operations Research
- MA4264 Game Theory
- MA4269 Mathematical Finance II
- ST4245 Statistical Methods for Finance

Modular Credit Cumulative Table					
Requirements	B.Sc.	B.Sc. (Hons)			
University Requirements	20 MC	20 MC			
Faculty Requirements	4-8 MC*	4-12 MC*			
Major Requirements	60-66 MC	92-98 MC			
Unrestricted Free Electives	26-36 MC	30-44 MC			
Total	120 MC	160 MC			

^{*}Faculty requirements of 12MCs and 16MCs (required for the B.Sc. and B.Sc.(Hons) programmes respectively) are partially fulfilled through the reading of CS/PC/ST modules within the major.

Published 30 June 2016 Updated 30 December 2016 Updated 30 June 2017 Updated 16 May 2018

[^]Adjusted Level and Cumulative Major MCs respectively if taking MA2104 to fulfil List I.