Math

Masterclass

Linear Algebra and an
Application

Jonathon Teo
jonathonteo@nus.edu.sg

Welcome to NUS, CHS (College of Humanities and Sciences)

College of
 Humanities and Sciences

IBTH MAY
2023
satueday

WATCH THIS SPACE! MORE UPDATES COMINC!

Introduction to Linear Algebra

- Why study Linear Algebra
- What is Linear Algebra
- Who is Linear Algebra

Introduction to Linear Algebra

- Why study Linear Algebra
- What is Linear Algebra
- Whois Linear Algebra
- Compulsory for Math, Data Science, Quantitative finance, Computer Science, and Engineering students.
- It is ubiquitous.
- Data are organized as matrices
- Data analytics, machine learning, statistics, finance, economics
- Computer information and physical system are coded as vectors
- This entire presentation slide is encoded as a (binary) vector
- A 720×576 pixels coloured picture can be represented as 3 times 720 by 576 matrix, with entries from 1 to 256.

Why study Linear Algebra

Who are they?

Founders of Google.

- Left: Larry Page, net worth of $\$ 84$ billion
- Right: Sergey Brin, net worth of $\$ 78$ billion

Enrolled in Stanford University for their Ph.D. but did not graduate.

Developed the Google page-rank algorithm.

What is Linear Algebra
In the x, y-plane, a straight line can be expressed as

- $y=m x+c$
- $x=a$
- More generally

$$
a x+b y=c
$$

- This is known as a linear equation with 2 variables.

What is Linear Algebra

- A linear equation with n variables (in standard form) can be written as

$$
a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}=b
$$

- $a_{1}, a_{2}, \ldots, a_{n}$ are called the coefficients.
- b is known as the constant.
- May solve m linear equations simultaneously,

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \\
& \vdots \\
& a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n}=b_{m}
\end{aligned}
$$

- This is known as a linear system.

What is Linear Algebra

- Example: 2 equations, 2 variables

$$
\begin{aligned}
& x+y=2 \\
& x-y=0
\end{aligned}
$$

- $x=1, y=1$ is the only solution to the system.
- Example: 2 equations, 3 variables

$$
\begin{aligned}
& x+y+z=1 \\
& x-y+z=2
\end{aligned}
$$

- $y=-\frac{1}{2}, x=\frac{3}{2}-z$ for any real number z.

What is Linear Algebra

- Example: 5 equations, 5 variables

$$
\begin{array}{cl}
x_{1}+x_{2}+x_{3}+x_{4}+x_{5}=-1 & \text { Provide a solution } \\
x_{1}+2 x_{2}+3 x_{3}+x_{4}+x_{5}=0 & \text { to the linear system } \\
x_{1}+x_{2}+x_{3}+x_{4}+2 x_{5}=0 & \\
2 x_{1}+2 x_{2}+2 x_{3}+x_{4}+3 x_{5}=0 & \\
x_{1}+3 x_{2}+x_{3}+x_{4}+3 x_{5}=-1 &
\end{array}
$$

- Solution: $x_{1}=-1, x_{2}=-1, x_{3}=1, x_{4}=-1, x_{5}=1$.

How?

What is Linear Algebra
A linear system (in standard form)

$$
\begin{aligned}
& x+y=2 \\
& x-y=0
\end{aligned}
$$

can be converted to a matrix equation

The is obtained via matrix multiplication.

What is Linear Algebra

- A solution to a linear system can be represented as a vector
- Example: $\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right)\binom{1}{1}=\binom{2}{0}$
- Geometrical interpretation:

What is Linear Algebra

Example: $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$
The matrix reflects a vector alone the line $x=y$.

$\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\binom{-1}{1}=\binom{1}{-1}=-\binom{-1}{1}$

$$
\left(\begin{array}{cc}
0 & 1 \\
0 & 1 \\
1 & 0
\end{array}\right)=\binom{1}{1}=\binom{1}{1}
$$

$$
\binom{1}{1}
$$

$$
\binom{1}{1}
$$

What is Linear Algebra

Example: $\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)$
The matrix takes a vector and maps it to the line $x=y$ such that both coordinates are the sum of the original coordinates.

What is Linear Algebra

A vector \boldsymbol{v} is an eigenvector of a matrix \boldsymbol{A} if $A \boldsymbol{v}=\lambda \boldsymbol{v}$ for some real number λ.

Example:

- $\binom{-1}{1}$ is an eigenvector of $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\binom{-1}{1}=\binom{1}{-1}=(-1)\binom{-1}{1}$.
- $\binom{1}{1}$ is an eigenvector of $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\binom{1}{1}=\binom{1}{1}=(1)\binom{-1}{1}$.
- $\binom{-1}{1}$ is an eigenvector of $\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right),\left(\begin{array}{cc}1 & 1 \\ 1 & 1\end{array}\right)\binom{-1}{1}=\binom{0}{0}=0\binom{-1}{1}$.
- $\binom{1}{1}$ is an eigenvector of $\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right),\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)\binom{1}{1}=\binom{2}{2}=2\binom{1}{1}$.

Google Page-rank Algorithm

- Assume a set S consisting of 4 of sites containing the key words. Name the sites $s_{1}, s_{2}, s_{3}, s_{4}$. Suppose
- s_{1} references s_{2}, s_{3} and s_{4}.
- s_{2} references s_{4} only.
- s_{3} references s_{1} and s_{4}.
- s_{4} references s_{1} and s_{3}.
- Define the adjacency matrix as $_{S_{1}}$ such $_{S_{3}} s_{4}$

$$
\left(\begin{array}{cccc}
0 & 0 & 1 / 2 & 1 / 2 \\
1 / 3 & 0 & 0 & 0 \\
1 / 3 & 0 & 0 & 1 / 2 \\
1 / 3 & 1 & 1 / 2 & 0
\end{array}\right) \quad \begin{aligned}
& s_{1} \\
& s_{2} \\
& s_{3} \\
& s_{4}
\end{aligned}
$$

Google Page-rank Algorithm

- s_{1} references s_{2}, s_{3} and s_{4}.
- s_{2} references s_{4} only.
- s_{3} references s_{1} and s_{4}.
- s_{4} references s_{1} and s_{3}.

Suppose a person is at site 3 , his state vector is represented by $\left(\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right)$.
His next state vector will be $\left(\begin{array}{cccc}0 & 0 & 1 / 2 & 1 / 2 \\ 1 / 3 & 0 & 0 & 0 \\ 1 / 3 & 0 & 0 & 1 / 2 \\ 1 / 3 & 1 & 1 / 2 & 0\end{array}\right)\left(\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right)=\left(\begin{array}{c}1 / 2 \\ 0 \\ 0 \\ 1 / 2\end{array}\right)$.
This means that he will be either in site 1 or 4 , with probability $1 / 2$ each.

Google Page-rank Algorithm

If he continues surfing, the next state vector will be

$$
\left(\begin{array}{cccc}
0 & 0 & 1 / 2 & 1 / 2 \\
1 / 3 & 0 & 0 & 0 \\
1 / 3 & 0 & 0 & 1 / 2 \\
1 / 3 & 1 & 1 / 2 & 0
\end{array}\right)\left(\begin{array}{c}
1 / 2 \\
0 \\
0 \\
1 / 2
\end{array}\right)=\left(\begin{array}{c}
1 / 4 \\
1 / 6 \\
5 / 12 \\
1 / 6
\end{array}\right)
$$

This means that after 2 clicks, he will end up in either of the 4 sites, with the respective probabilities.

What happens if he keeps clicking randomly?

Google Page-rank Algorithm

1 click: $\left(\begin{array}{c}1 / 2 \\ 0 \\ 0 \\ 1 / 2\end{array}\right), 2$ clicks: $\left(\begin{array}{c}1 / 4 \\ 1 / 6 \\ 5 / 12 \\ 1 / 6\end{array}\right), 5$ clicks: $\left(\begin{array}{c}0.2951 \\ 0.1042 \\ 0.2361 \\ 0.3646\end{array}\right)$
7 clicks: $\left(\begin{array}{l}0.3006 \\ 0.1001 \\ 0.2604 \\ 0.3388\end{array}\right), 10$ clicks: $\left(\begin{array}{l}0.3000 \\ 0.1000 \\ 0.2675 \\ 0.3325\end{array}\right), 12$ clicks: $\left(\begin{array}{l}0.3000 \\ 0.1000 \\ 0.2669 \\ 0.3331\end{array}\right)$
15 clicks: $\left(\begin{array}{l}0.3000 \\ 0.1000 \\ 0.2666 \\ 0.3335\end{array}\right), 20$ clicks: $\left(\begin{array}{l}0.3000 \\ 0.1000 \\ 0.2667 \\ 0.3333\end{array}\right), 100$ clicks: $\left(\begin{array}{l}0.3000 \\ 0.1000 \\ 0.2667 \\ 0.3333\end{array}\right)$

Google Page-rank Algorithm

Observe that

- The state vectors are approximately the same after 20 clicks.
- In the long run, the resultant state vector is $\left(\begin{array}{l}0.3000 \\ 0.1000 \\ 0.2667 \\ 0.3333\end{array}\right)$.
- This means that in the long run, he will most probably end up in site 4 , followed by site 1 , then 3 , and least likely be in site 2 .

Google Page-rank Algorithm

Fact: the resultant state vector is the same regardless of which site one begins on.

- Initial state vector: $\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right)$, after 100 clicks: $\left(\begin{array}{l}0.3000 \\ 0.1000 \\ 0.2667 \\ 0.3333\end{array}\right)$.
- Initial state vector: $\left(\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right)$, after 100 clicks: $\left(\begin{array}{l}0.3000 \\ 0.1000 \\ 0.2667 \\ 0.3333\end{array}\right)$.
- Initial state vector: $\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right)$, after 100 clicks: $\left(\begin{array}{l}0.3000 \\ 0.1000 \\ 0.2667 \\ 0.3333\end{array}\right)$.

This means that the probability of a user ending up in each site is independent of where he starts. The probability can thus be used to rank the websites.

Google Page-rank Algorithm

$$
\left(\begin{array}{cccc}
0 & 0 & 1 / 2 & 1 / 2 \\
1 / 3 & 0 & 0 & 0 \\
1 / 3 & 0 & 0 & 1 / 2 \\
1 / 3 & 1 & 1 / 2 & 0
\end{array}\right)\left(\begin{array}{l}
0.3000 \\
0.1000 \\
0.2667 \\
0.3333
\end{array}\right)=\left(\begin{array}{l}
0.3000 \\
0.1000 \\
0.2667 \\
0.3333
\end{array}\right)
$$

Observe that the resultant vector is an eigenvector of the adjacency matrix! Google Page-rank algorithm

- After a user types in the key words, the adjacency matrix is formed.
- The eigenvector of the adjacency matrix is computed.
- The sites are rank according to their probabilities given in the resultant state vector.

Thank You for your Attention.

Email: AskMathUG@nus.edu.sg
Department webpage
https://www.math.nus.edu.sg/

