NATIONAL UNIVERSITY OF SINGAPORE

Qualifying Exam Paper I: Algebra

August 2022

Time allowed: <u>3 hours</u>

INSTRUCTIONS TO CANDIDATES

- 1 Write down your student number clearly on the top left of every page of the answers. Do not write your name.
- 2 Write on one side of the paper only. Write the question number and page number (if a single question takes more than one page) on the top right corner of each page (e.g. $Q1, Q2, \ldots$).
- 3 This examination paper contains **SEVEN** (7) questions and comprises **TWO** (2) pages, including this one. Answer ALL questions.
- 4 The total mark for this paper is **ONE HUNDRED** (100).
- 5 This is a **CLOSED BOOK** examination.

 $\mathbf{2}$

Convention: Unless specified otherwise, we assume: rings are with $1 \neq 0$; modules are left modules; ring homomorphisms preserve the multiplicative identity.

Q1 [15 marks] Let G be a group of order 12. Show that some Sylow subgroup of G is normal.

Q2 [15 marks] Let M be a Noetherian R-module for some ring R. Let $f : M \to M$ be a R-module homomorphism. Prove that f is surjective, then f is an isomorphism.

Q3 [10 marks] Let F be an algebraically closed field. Prove that F is an infinite set.

Q4 [15 marks] Let $GL_2(F_2)$ be the general linear group over the finite field F_2 of 2 elements. Determine the number of conjugacy classes of $GL_2(F_2)$.

Q5 [15 marks] Let M be an abelian group generated by x and y subject to the relations 7x + 5y = 0 and 2x - 4y = 0. Prove that $M \cong \mathbb{Z}/38\mathbb{Z}$.

Q6 [15 marks] Let R be a commutative ring with a unique maximal ideal M. Show that every element in R - M is invertible. (Here $R - M = \{r \in R | r \notin M\}$.)

Q7 [15 marks] Let M, N, K be R-modules for some ring R. Then the sequence $M \to N \to K \to 0$ is exact if and only if the induced sequence $0 \to Hom_{R-\text{mod}}(K, D) \to Hom_{R-\text{mod}}(N, D) \to Hom_{R-\text{mod}}(M, D)$ is exact for all R-module D.

End of Paper