Algebra Qualifying Exam January 2024

January 1, 2024

Problems

- 1. Classify all groups of order 21.
- 2. Compute the Galois group of the polynomial $x^4 + 2$ over \mathbf{Q} , and draw the lattice of all subfields of its splitting field.
- 3. Compute the group $\operatorname{Tor}_1^{\mathbf{Z}}(\mathbf{Z}/6\mathbf{Z}, \mathbf{Z}/8\mathbf{Z})$.
- 4. Precisely state the classification theorem for finitely generated modules over a PID.
- 5. Prove that if A is a Noetherian ring and M is a finitely generated A-module, then any A-submodule $N \subset M$ is finitely generated.
- 6. Give precise definitions or statements of the following notions:
 - i. A unique factorization domain.
 - ii. An integrally closed domain.
 - iii. The Hilbert basis theorem.
- 7. Determine the number of irreducible representations of the group S_4 , along with their dimensions.
- 8. Classify all abelian groups of order 360.
- 9. Give examples of each of the following:
 - i. A commutative ring with exactly one maximal ideal, which is not a field.
 - ii. An integral domain which is not a unique factorization domain.
 - iii. A commutative ring with infinitely many elements but exactly 6 invertible elements.