Analysis 2022 August

(1) Let $f \in L_{loc}(\mathbb{R}^n)$ and define

$$Mf(x) = \sup_{r>0} \int_{B_r(x)} |f(y)| dy / |B_r(x)| \text{ where } B_r(x) = \{ y \in \mathbb{R}^n : |x-y| < r \}.$$

Show that maximal function Mf is Borel measurable.

- (2) (a) Let $f : \mathbb{R} \to \mathbb{R}$ be a convex function. Show that for given any $x_0 \in \mathbb{R}$, there exists $l \in \mathbb{R}$ such that $f(x) \ge f(x_0) + l(x x_0)$ for all $x \in \mathbb{R}$.
 - (b) Use part (a) to prove Jensen's inequality: (let $g : [a, b] \to \mathbb{R}$ be continuous and $\alpha : [a, b] \to [0, 1]$ be non-decreasing such that $\alpha(a) = 0, \alpha(b) = 1$)

$$f(\int_{a}^{b} g(x)d\alpha(x)) \leq \int_{a}^{b} f(g(x))d\alpha(x).$$
 (Riemann Stieltjes integral)

(c) Suppose $h: [0, \infty) \to [0, \infty)$ is continuous, $1 \le p < \infty, r > 0$. Use part (b) or otherwise to show that

$$\left(\int_0^x h(t)dt\right)^p \le (p/r)^{p-1} x^{r(1-\frac{1}{p})} \int_0^x h(t)^p t^{p-r-1+\frac{r}{p}} dt \text{ for } x > 0.$$

(d) With the help of part (c), show that

$$\int_0^\infty \left(\int_0^x h(t) dt \right)^p x^{-r-1} dx \le (p/r)^p \int_0^\infty h(t)^p t^{p-r-1} dt.$$

(The above is known as Hardy's inequality.)

(3) Let Ω be a bounded open set in \mathbb{R}^n and let $f : \Omega \times \mathbb{R} \to \mathbb{R}$ such that the function $f(\cdot, t)$ is measurable for each $t \in \mathbb{R}$, and $f(x, \cdot)$ is continuous for almost all $x \in \Omega$. Show that f(x, u(x)) is measurable if u is a measurable function on Ω . If the function f is bounded from below and $u_k \to u$ in $L^1(\Omega)$, show that [8 marks]

$$\int_{\Omega} f(x, u(x)) dx \le \liminf_{k \to \infty} \int_{\Omega} f(x, u_k(x)) dx.$$

[5 marks]

[20 marks]

- (4) Let $\{f_n\} \subset L^p$ such that $||f_n f||_{L^p} \to 0, 1 \le p < \infty$. Show that [10 marks] (a) $f_n \to f$ in measure;
 - (b) $\int_{E_k} |f_n|^p dx \to 0$ uniformly in *n* for any sequence of measurable sets E_k with $|E_k| \to 0$; (c) for all $\varepsilon > 0$, there exists E_{ε} such that $|E_{\varepsilon}| < \infty$ and

$$\int_{\mathbb{R}^n \setminus E_{\varepsilon}} |f_n|^p dx < \varepsilon \quad \text{for all } n.$$

(5) (a) Compute $\int_0^\infty \frac{\log(1+x^2)}{1+x^2} dx.$

(b) A family \mathcal{F} of functions on an open set Ω is said to be locally uniformly bounded if given any $x \in \Omega$, there exist $r_x, M > 0$ such that $|f(y)| \leq M$ for all $y \in B_{r_x}(x) = \{|y-x| < r_x\} \subset \Omega$ and $f \in \mathcal{F}$. Show that any locally uniformly bounded family of analytic functions on an open connected set $\Omega \subset \mathbb{C}$ is equi-continuous on any compact subset of Ω . [18 marks]

- (6) Let $f: (-1,1) \times (-1,1) \to \mathbb{R}$ be such that both $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ exist and bounded, show that f is continuous. [5 marks]
- (7) Let Ω be a bounded open set in \mathbb{R}^n . Show that there exist countable disjoint closed cubes $\{Q_i\}$ in Ω such that $|\Omega \setminus (\bigcup_i Q_i)| = 0.$ [5 marks]
- (8) <u>Answer only true or false</u> for each of the following statements. 0.5 marks will be deducted for each wrong answer. [9 marks].
 - (a) Let $f : [0,1] \times [0,1] \to \mathbb{R}$ be such that $f(x, \cdot)$ and $f(\cdot, x)$ are continuous function on [0,1]. If f(x,y) = f(y,x) for all $x, y \in [0,1]$, then f is continuous on $[0,1] \times [0,1]$.
 - (b) Let $f : \mathbb{R} \to \mathbb{R}$ and $g : (-1, 1) \to \mathbb{R}$ (both infinitely differentiable) such that g(0) = 0and

 $\limsup(|f^{(n)}(0)|/n!)^{1/n} = 0$ and $\limsup(|g^{(n)}(0)|/n!)^{1/n} = 1.$

Then $f \circ g$ is real analytic on (-1, 1).

(c) Let $f : \mathbb{C} \to \mathbb{C}$ be an analytic function. If there are $z_1 \neq z_2$ such that $f(z_1) = f(z_2)$, then there exists z_0 on the line segment connecting z_1 to z_2 such that $f'(z_0) = 0$.

- (d) If $f: \Omega \to \mathbb{R}$ is measurable where Ω is a bounded open set in \mathbb{R}^n , then for any $\varepsilon > 0$, there exists a compact set $K \subset \Omega$ and $M \in \mathbb{N}$, such that $|f(x)| \leq M$ for all $x \in K$, $|\Omega \setminus K| < \varepsilon$.
- (e) If f is an analytic function on $B_r(1+i) = \{z \in \mathbb{C} : |z-1-i| < r\}$, then $f(z) = \sum_{k=0}^{\infty} a_k (z (1+i))^k$ on $B_r(1+i)$.
- (f) If f is continuous and of bounded variation on [a, b], then f is absolutely continuous on [a, b].
- (9) For at most Four (4) of the following statements, prove or disprove each of the statement considered.[20 marks]
 - (a) Let $\{f_n\} \subset \mathcal{R}(I)$ (Riemann integrable on the interval I) and $f_n(x) \to f(x)$ for all x. If $f \in \mathcal{R}(I)$ and $\{f_n\}$ is uniformly bounded, then (Riemann integral) $\int_I f dx = \lim_{n \to \infty} \int_I f_n dx$.
 - (b) Let f be a infinitely differentiable on \mathbb{R}^n such that $f(x) \ge 0$, f = 0 outside $B_r(0)$, then $\frac{\partial f}{\partial \nu} = 0$ on $\partial B_r(0)$ where $\nu(x)$ be the outward normal vector. Then f must be a zero function.
 - (c) If f is Lebesgue measurable, then there exists Borel function g such that f = g a.e..
 - (d) Let (E_i) be a sequence of measurable sets in \mathbb{R} such that $\sum_{i=1}^{\infty} |E_i| < \infty$. Let $F = \bigcap_{k=1}^{\infty} \bigcup_{i=k}^{\infty} E_i$. Then |F| = 0.
 - (e) Let $\{f_n\}$ be a sequence of functions of bounded variation on [a, b]. Let $f(x) = \lim_{n \to \infty} f_n(x)$ (limit exist). Suppose there exists M > 0 such that

$$\sum_{i=1}^{N} |f_n(x_i) - f_n(x_{i-1})| \le M \text{ for all } n$$

for any partition $x_0 = a < x_1 < \cdots < x_N = b$.

Then f is also a function of bounded variation on [a, b].

(f) Let Ω be a bounded open connected set in \mathbb{R}^N and $f: \overline{\Omega} \subset \mathbb{R}^N \to \mathbb{R}^N$ such that f is continuous on $\overline{\Omega}$ and continuously differentiable on Ω . Let

$$f^{-1}(0) = \{x \in \Omega : \text{ such that } f(x) = 0\}.$$

Suppose f is none zero on the boundary of Ω . Then $f^{-1}(0)$ must be finite if $|J_f(y)| \neq 0$ for all $y \in f^{-1}(0)$ where J_f is the Jacobian of f.