Ph.D. Qualifying Examination 2023 August (Analysis) Do all the questions.

Question 1 [14 marks]

Answer only true or false for each of the following statements. 1 mark will be deducted for each wrong answer.

- (a) The product of functions of bounded variations is also a function of bounded variation.
- (b) For any $1 \le p < \infty$, convolutions of L^p functions is measurable.
- (c) The uniform limit of a sequence of functions of bounded variations on [a, b] is also a function of bounded variation.
- (d) Any open set in Rⁿ is the union of at most countable open sets that are pairwise disjoint and connected.
- (e) If f is nonconstant analytic on Ω (domain), then, for all $B_r(a) \subset \Omega$, there exists $b \in B_r(a)$ such that |f(b)| > |f(a)|.
- (f) Let f be an entire function on \mathbb{C} . If there exist uncountable number of points such that f has the same value at those points, then f is a constant.
- (g) Let $f \in L^p(\mathbb{R}^n)$, $1 \leq p < \infty$. Let $\{\phi_k\}$ be a sequence of continuous functions such that it converges uniformly on any compact subset of \mathbb{R}^n and $\phi_k \to f$ in $L^p(\mathbb{R}^n)$. If $\phi_k(x_0) \to f(x_0)$ with $x_0 \in \mathbb{R}^n$, then x_0 is a Lebesgue's point of f.

Question 2 [10 marks]

Let $K : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ be a measurable function such that both

$$\mathbf{esssup}_{y \in \mathbb{R}^n} \int |K(x,y)| dx, \mathbf{esssup}_{x \in \mathbb{R}^n} \int |K(x,y)| dy \text{ are finite.}$$

Let $f \in L^2(\mathbb{R}^n)$ and define $h(f)(x) = \int K(x, y) f(y) dy$. Show that $h(f) \in L^2(\mathbb{R}^n)$.

Question 3 [10 marks]

Let g be a given continuous function on the circle $\{z \in \mathbb{C} : |z| = 1\}$. Show that the function $f(z) = \int_{|\xi|=1} \frac{g(\xi)}{\xi - z} d\xi$ is analytic for all z with $|z| \neq 1$.

Question 4 [8 marks]

Let f, g be Riemann integrable on [0, 1]. If g is a periodic function on \mathbb{R} with period 1, show that

$$\lim_{k \to \infty} \int_0^1 f(x)g(kx)dx = \lim_{k \to \infty} \int_0^1 f(x)g(kx+c)dx$$

for any constant $c \in \mathbb{R}$ (you may assume all limits exist).

Question 5 [8 marks]

 $f: \mathbb{R}^n \to \mathbb{R}$ is lower semi-continuous (LSC) if (and only if) $\liminf_{x \to x_0} f(x) \ge f(x_0)$ for all $x_0 \in \mathbb{R}^n$, show that

- (i) $\{f(x) > t\}$ is open for all t;
- (ii) f has a minimum on any compact subset in \mathbb{R}^n ;
- (iii) $\sup_n f_n$ is LSC if f_n are LSC for all n.

Question 6 [10 marks]

Let $\Phi : [0, \infty) \to [0, \infty)$ be a continuous non-decreasing concave function with $\Phi(0) = 0$ and let $f_n \to f$ a.e. on \mathbb{R}^n . If $\int_{\mathbb{R}^n} \Phi(|f_n|) dx \leq M < \infty$ for all $n \in \mathbb{N}$, show that

$$\lim_{n \to \infty} \int_{\mathbb{R}^n} \Phi(|f_n - f|) - \Phi(|f_n|) + \Phi(|f|) dx = 0.$$

Question 7 [8 marks]

Let D be the open unit disk in \mathbb{C} and $f: D \to \mathbb{C}$ be analytic such that $|f(z)| \leq |z|/2$ for all z, show that

$$\frac{|f'(z)|}{1-4|f(z)|^2} \le \frac{1}{2(1-|z|^2)} \text{ for all } z \in D.$$

Question 8 [7 marks]

Let $f : E \to \mathbb{R}$ be a measurable function with $|E| < \infty$. Show that given any $\varepsilon > 0$, there exist M > 0 and a compact set $K \subset E$ such that $|E \setminus K| < \varepsilon$ and $e^{f(x)} \leq M$ for all $x \in K$.

Question 9 [25 marks]

For at most **five** (5) of the following statements, prove or disprove each of the statement considered.

(a) Let f be a continuous function on [a, b] and $\phi, \psi : [a, b] \to \mathbb{R}$ be monotone functions. If $\phi = \psi$ except countable number of points, then

$$\int_{a}^{b} f d\phi = \int_{a}^{b} f d\psi.$$

- (b) If $\{f_n\}$ is a nondecreasing sequence of Riemann integrable functions on $R = [0, 1] \times [0, 1]$, that converges to 0, then $\lim_{n\to\infty} \int_R f_n dx = 0$.
- (c) Let U be an open set in \mathbb{R}^n and $f: U \to \mathbb{R}^n$ be a differentiable function (transformation). Then f maps measurable sets in U to measurable sets.
- (d) Let $\{f_n\}$ be a sequence of harmonic functions on the open unit disk \mathcal{D} that converges uniformly on any compact subset of \mathcal{D} . Then its limit f is also harmonic on the open unit disk.
- (e) Let $\{f_n\}$ be a sequence of functions in $L^2(\mathbb{R}^n)$. If $\int f_n g dx \to 0$ for all $g \in L^2(\mathbb{R}^n)$, then $\int |f_n|^2 dx \to 0$.
- (f) If f_n converges to f a.e., then it also converges to f in measure.
- (g) Let Ω be a bounded open set in \mathbb{R}^n . Then the completion of

 $C_c(\Omega) = \{ f : \Omega \to \mathbb{R} | f \text{ is continuous with compact support in } \Omega \}$

is (under sup norm)

 $C_0(\Omega) = \{f : \Omega \to \mathbb{R} | f \text{ is continuous such that for all } \varepsilon > 0,$

there exists compact set $K \subset \Omega$ with $|f(x)| < \varepsilon$ for $x \notin K$.