Ph.D. Qualifying Examination January 2022 (Analysis)

Answer all the following.

(1) Let $f: (a, b) \to \mathbb{R}$ be such that for any a < x < y < z < b, we have

$$\frac{f(y) - f(x)}{y - x} \le \frac{f(z) - f(x)}{z - x}$$

Show that f is both left and right differentiable on (a, b). Show that both left and right derivatives are nondecreasing and continuous except at countably many points. Hence show that f is differentiable on (a, b) except at countably many points. [12]

(2) Let $\mathcal{D} \subset \mathbb{C}$ be the open unit disk (with center 0) and \mathcal{H} be the family of analytic functions on \mathcal{D} . Let

 $A^2(\mathcal{D}) = \{ f \in \mathcal{H} : \int_{\mathcal{D}} |f|^2 d\lambda < \infty \}$ where λ is the Lebesgue measure on the complex plane \mathbb{R}^2 .

Show that $A^2(\mathcal{D})$ is a Hilbert space. [14]

Hint: first show that for any compact subset K of \mathcal{D} , there exists a constant C depending only on K such that

$$|f(z)| \le C ||f||_{L^2(\mathcal{D})}$$
 for all $z \in K$.

(3) Let $\{a_n\}_{n\in\mathbb{N}}, \{b_n\}_{n\in\mathbb{N}}$ be two bounded sequences. Show that [5]

$$\liminf_{n \to \infty} a_n + \liminf_{n \to \infty} b_n \le \liminf_{n \to \infty} (a_n + b_n).$$

(4) Let w be a nonnegative measurable function on \mathbb{R}^n and define $I_{\alpha}(x) = |x|^{\alpha-n}$ ($0 < \alpha < n$). Show that there exist constants $a, b \in \mathbb{R}$ such that [7]

$$I_{\alpha} * w(x) = \int_{0}^{\infty} \int_{B(x, r^{1/(\alpha - n)})} w(y) dy dr = a \int_{0}^{\infty} t^{b} \int_{B(x, t)} w(y) dy dt.$$

(5) Let $f : [a, b] \subset \mathbb{R} \to \mathbb{R}$ be absolutely continuous. Let $f^+(x) = \max\{0, f(x)\}$. Show that f^+ is differentiable a.e. and $(f^+)' = f'\chi_{\{f>0\}}$ a.e. . [8]

(6) Let \mathcal{D}_r be the open disk in the complex plane with center 0 and radius r. For each $k \in \mathbb{Z}$, compute

$$\int_{\mathcal{D}_{2r} \setminus \mathcal{D}_r} z^k d\lambda \text{ and } \int_{\mathcal{D}_{2r} \setminus \mathcal{D}_r} |z|^k d\lambda$$

where λ is the Lebesgue measure on \mathbb{R}^2 .

(7) Let Ω be a measurable set in \mathbb{R}^d and $f_n, g_n : \Omega \to \mathbb{R}$ be two sequences of integrable functions on Ω . Suppose $f_n \ge g_n$ a.e. and $f_n \to f, g_n \to g$ in measure on Ω . Suppose

$$\lim_{n \to \infty} \int_{\Omega} g_n dx = \int_{\Omega} g dx.$$

r

Show that

$$\int_{\Omega} f dx \le \liminf_{n \to \infty} \int_{\Omega} f_n dx.$$
[8]

(8) Let Ω be an open connected set in \mathbb{R}^d and $\{u_n\} \subset C_c^1(\Omega)$ be such that both u_n and $\frac{\partial u_n}{\partial x_j}$ are Cauchy sequences in $L^2(\Omega)$ (where $1 \leq j \leq d$). Suppose u, v are L^2 limit of u_n and $\frac{\partial u_n}{\partial x_j}$ respectively. If $\phi \in C_c^1(\Omega)$ show that

$$\int_{\Omega} u \frac{\partial \phi}{\partial x_j} dx = -\int_{\Omega} v \phi dx.$$
[8]

- (9) For at most Six (6) of the following statements, prove or disprove each of the statement below.[30].
 - (a) If a function f is Lipschitz continuous on [a, b], $-\infty < a < b < \infty$, then there exist nondecreasing absolutely continuous functions f_1, f_2 on [a, b] such that $f = f_1 - f_2$ on [a, b].
 - (b) If $\{f_n\}$ is a nondecreasing sequence of Riemann integrable functions on $R = [0, 1] \times [0, 1]$ that converges to 0, then $\lim_{n\to\infty} \int_R f_n dx = 0$.
 - (c) A complex valued function is entire if and only if it is equal to a power series $\sum_{k=0}^{\infty} a_k z^k$ that converges everywhere.
 - (d) If $T : \mathbb{R}^n \to \mathbb{R}^n$ is differentiable and 1 1 and T(U) is open whenever U is open, then T maps measurable sets to measurable sets.

[8]

- (e) If f is an analytic function on an open connected set \mathcal{D} in the complex plane, then it is either a constant function or it will map open subsets of \mathcal{D} to open sets.
- (f) If f and g are both real analytic functions at $x_0 \in \mathbb{R}$, then its product function fg is also real analytic at x_0 .
- (g) Let $f : \mathbb{R}^n \to \mathbb{R}$ be such that $\liminf_{x \to x_0} f(x) \ge f(x_0)$ for all $x_0 \in \mathbb{R}^n$. Then f is Borel measurable.
- (h) Let Ω be an open connected set in \mathbb{R}^n and
- $C_0(\Omega) = \{ f \in C(\Omega) : \forall \varepsilon > 0, \exists \text{ compact set } K \subset \Omega \text{ such that } |f(x)| < \varepsilon \ \forall x \notin K \}$ where $C(\Omega)$ is the space of continuous functions on Ω . Then $C_0(\Omega)$ is dense in $L^2(\Omega)$.
 - (i) Let $f : \mathbb{R}^3 \to \mathbb{R}^3$ be a continuously differentiable function such that the Jacobian/derivative Df has nonzero determinant at the origin 0. Then there exists $\varepsilon > 0$ such that for all $y \in \mathbb{R}^3$ with $|y - f(0)| < \varepsilon$, the equation f(x) = y has at least one solution.