Ph.D. Qualifying Examination January 2022 (Analysis)

Answer all the following.

(1) Let $f:(a, b) \rightarrow \mathbb{R}$ be such that for any $a<x<y<z<b$, we have

$$
\frac{f(y)-f(x)}{y-x} \leq \frac{f(z)-f(x)}{z-x}
$$

Show that f is both left and right differentiable on (a, b). Show that both left and right derivatives are nondecreasing and continuous except at countably many points. Hence show that f is differentiable on (a, b) except at countably many points.
(2) Let $\mathcal{D} \subset \mathbb{C}$ be the open unit disk (with center 0) and \mathcal{H} be the family of analytic functions on \mathcal{D}. Let
$A^{2}(\mathcal{D})=\left\{f \in \mathcal{H}: \int_{\mathcal{D}}|f|^{2} d \lambda<\infty\right\}$ where λ is the Lebesgue measure on the complex plane \mathbb{R}^{2}.
Show that $A^{2}(\mathcal{D})$ is a Hilbert space.
Hint: first show that for any compact subset K of \mathcal{D}, there exists a constant C depending only on K such that

$$
|f(z)| \leq C\|f\|_{L^{2}(\mathcal{D})} \text { for all } z \in K
$$

(3) Let $\left\{a_{n}\right\}_{n \in \mathbb{N}},\left\{b_{n}\right\}_{n \in \mathbb{N}}$ be two bounded sequences. Show that

$$
\liminf _{n \rightarrow \infty} a_{n}+\liminf _{n \rightarrow \infty} b_{n} \leq \liminf _{n \rightarrow \infty}\left(a_{n}+b_{n}\right)
$$

(4) Let w be a nonnegative measurable function on \mathbb{R}^{n} and define $I_{\alpha}(x)=|x|^{\alpha-n}(0<\alpha<$ $n)$. Show that there exist constants $a, b \in \mathbb{R}$ such that

$$
I_{\alpha} * w(x)=\int_{0}^{\infty} \int_{B\left(x, r^{1 /(\alpha-n)}\right)} w(y) d y d r=a \int_{0}^{\infty} t^{b} \int_{B(x, t)} w(y) d y d t
$$

(5) Let $f:[a, b] \subset \mathbb{R} \rightarrow \mathbb{R}$ be absolutely continuous. Let $f^{+}(x)=\max \{0, f(x)\}$. Show that f^{+}is differentiable a.e. and $\left(f^{+}\right)^{\prime}=f^{\prime} \chi_{\{f>0\}}$ a.e. .
(6) Let \mathcal{D}_{r} be the open disk in the complex plane with center 0 and radius r. For each $k \in \mathbb{Z}$, compute

$$
\int_{\mathcal{D}_{2 r} \backslash \mathcal{D}_{r}} z^{k} d \lambda \text { and } \int_{\mathcal{D}_{2 r} \backslash \mathcal{D}_{r}}|z|^{k} d \lambda
$$

where λ is the Lebesgue measure on \mathbb{R}^{2}.
(7) Let Ω be a measurable set in \mathbb{R}^{d} and $f_{n}, g_{n}: \Omega \rightarrow \mathbb{R}$ be two sequences of integrable functions on Ω. Suppose $f_{n} \geq g_{n}$ a.e. and $f_{n} \rightarrow f, g_{n} \rightarrow g$ in measure on Ω. Suppose

$$
\lim _{n \rightarrow \infty} \int_{\Omega} g_{n} d x=\int_{\Omega} g d x
$$

Show that

$$
\begin{equation*}
\int_{\Omega} f d x \leq \liminf _{n \rightarrow \infty} \int_{\Omega} f_{n} d x \tag{8}
\end{equation*}
$$

(8) Let Ω be an open connected set in \mathbb{R}^{d} and $\left\{u_{n}\right\} \subset C_{c}^{1}(\Omega)$ be such that both u_{n} and $\frac{\partial u_{n}}{\partial x_{j}}$ are Cauchy sequences in $L^{2}(\Omega)$ (where $1 \leq j \leq d$). Suppose u, v are L^{2} limit of u_{n} and $\frac{\partial u_{n}}{\partial x_{j}}$ respectively. If $\phi \in C_{c}^{1}(\Omega)$ show that

$$
\int_{\Omega} u \frac{\partial \phi}{\partial x_{j}} d x=-\int_{\Omega} v \phi d x .
$$

(9) For at most Six (6) of the following statements, prove or disprove each of the statement below.
(a) If a function f is Lipschitz continuous on $[a, b],-\infty<a<b<\infty$, then there exist nondecreasing absolutely continuous functions f_{1}, f_{2} on $[a, b]$ such that $f=f_{1}-f_{2}$ on $[a, b]$.
(b) If $\left\{f_{n}\right\}$ is a nondecreasing sequence of Riemann integrable functions on $R=[0,1] \times$ $[0,1]$ that converges to 0 , then $\lim _{n \rightarrow \infty} \int_{R} f_{n} d x=0$.
(c) A complex valued function is entire if and only if it is equal to a power series $\sum_{k=0}^{\infty} a_{k} z^{k}$ that converges everywhere.
(d) If $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is differentiable and $1-1$ and $T(U)$ is open whenever U is open, then T maps measurable sets to measurable sets.
(e) If f is an analytic function on an open connected set \mathcal{D} in the complex plane, then it is either a constant function or it will map open subsets of \mathcal{D} to open sets.
(f) If f and g are both real analytic functions at $x_{0} \in \mathbb{R}$, then its product function $f g$ is also real analytic at x_{0}.
(g) Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be such that $\liminf _{x \rightarrow x_{0}} f(x) \geq f\left(x_{0}\right)$ for all $x_{0} \in \mathbb{R}^{n}$. Then f is Borel measurable.
(h) Let Ω be an open connected set in \mathbb{R}^{n} and
$C_{0}(\Omega)=\{f \in C(\Omega): \forall \varepsilon>0, \exists$ compact set $K \subset \Omega$ such that $|f(x)|<\varepsilon \forall x \notin K\}$ where $C(\Omega)$ is the space of continuous functions on Ω. Then $C_{0}(\Omega)$ is dense in $L^{2}(\Omega)$.
(i) Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a continuously differentiable function such that the Jacobian/derivative $D f$ has nonzero determinant at the origin 0 . Then there exists $\varepsilon>0$ such that for all $y \in \mathbb{R}^{3}$ with $|y-f(0)|<\varepsilon$, the equation $f(x)=y$ has at least one solution.

