Ph.D. Qualifying Examination 2023 January (Analysis)

Answer all the following.

Question 1 [12 marks]

Answer only true or false for each of the following statements. 1 mark will be deducted for each wrong answer.
(a) If a function f is integrable on \mathbb{R}, then

$$
\int_{a}^{b} f(x)(\sin x)^{k} d x \rightarrow 0 \text { as } k \rightarrow \infty
$$

(b) If $\left(x_{0}, y_{0}\right) \in \mathbb{R}^{2}$ and $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ such that

$$
\lim _{x \rightarrow x_{0}} f(x, y)=g(y) \text { for all } y \text { and } \lim _{y \rightarrow y_{0}} g(y)=l
$$

then $\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} f(x, y)=l$.
(c) Let $f, g: \mathbb{R} \rightarrow \mathbb{R}$ be real analytic at x_{0}. Then their product $f(x) g(x)$ is also analytic at x_{0}.
(d) Let $\left\{a_{n}\right\}$ be a seqence of nonzero real numbers. Then

$$
\lim _{n \rightarrow \infty}\left|a_{n+1} / a_{n}\right|=r \quad \text { implies } \limsup _{n \rightarrow \infty}\left|a_{n}\right|^{1 / n}=r .
$$

(e) Let $\left\{a_{k}\right\}$ be a sequence in \mathbb{R} such that $\sum_{j=1}^{\infty} a_{\sigma(j)}$ for all permutations σ on \mathbb{N}. Then the series converges absolutely.
(f) Let μ, ν be Borel measures on \mathbb{R}^{n} such that $\nu(E)=0$ whenever $\mu(E)=0 E \subset \mathbb{R}^{n}$. Then for all $\varepsilon>0$, there exists $\delta>0$ such that $\nu(E)<\varepsilon$ whenever $\mu(E)<\delta$.

Question 2 [8 marks]

Show that the function $f(z)=\sum_{n=1}^{\infty} 1 / n^{z}$ is analytic on $A=\{z \in \mathbb{C}: \operatorname{Re} z>1\}$.

Question 3 [8 marks]

Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be analytic and $\mathcal{D}=\left\{(x, y): x^{2}+y^{2} \leq 1\right\}$. Show that the function $F(x, y)=f(x+y i) 1_{\mathcal{D}}(x, y)$ is Lebesgue measurable on \mathbb{R}^{2} and

$$
f(0)=\int_{\mathbb{R}^{2}} F(x, y) d x d y / \pi
$$

Question 4 [10 marks]

Let f_{n} and w be measurable functions on \mathbb{R}^{N} such that $\int\left|f_{n}(x)\right|^{p}|w(x)| d x \leq M$ for all n where $0<p \leq 1$. Suppose $f_{n} \rightarrow f$ a.e.. Show that

$$
\int\left(\left|f_{n}(x)\right|^{p}-|f(x)|^{p}-\left|f_{n}(x)-f(x)\right|^{p}\right)|w(x)| d x \rightarrow 0 \text { as } n \rightarrow \infty
$$

Question 5 [8 marks]

Let f be analytic on an open set $U \subset \mathbb{C}$ and $z_{0} \in U$ with $f^{\prime}\left(z_{0}\right) \neq 0$. Show that if γ is a sufficiently small circle centered at z_{0} in anti-clockwise direction, then

$$
\frac{2 \pi i}{f^{\prime}\left(z_{0}\right)}=\int_{\gamma} \frac{1}{f(z)-f\left(z_{0}\right)} d z .
$$

Question 6 [18 marks]

Let $f: \Omega \rightarrow \mathbb{R}^{n}$ be such that f is continuously differentiable where Ω is a bounded open connected set in \mathbb{R}^{n}. For each $t \in \mathbb{R}$ define $f_{t}(x)=f(x)+t x$. Let \mathcal{D} be any open connected set in Ω such that $\overline{\mathcal{D}} \subset \Omega$. Show that f_{t} is injective on \mathcal{D} for sufficiently large t and $f(\partial \mathcal{D})=\partial f(\mathcal{D})$.

Next, suppose $g: \Omega \rightarrow \mathbb{R}^{n}$ that is continuously differentiable with $g(x)=f(x)$ for $x \in \partial \mathcal{D}$. Show that

$$
\int_{\mathcal{D}}\left|J_{g}\right| d x=\int_{\mathcal{D}}\left|J_{f}\right| d x \text { where } J_{g}, J_{f} \text { are Jacobians of } f \text { and } g \text { respectively. }
$$

Question 7 [16 marks]

Let $\left\{a_{k}\right\}$ be a sequence of nonegative real numbers and $1 \leq p<\infty$. Show that there exists a constant $C>0$ independent of the above sequence such that

$$
\left\|\sum_{k=1}^{\infty} a_{k} 1_{\tilde{B}_{k}}\right\|_{L^{p}} \leq C\left\|\sum_{k=1}^{\infty} a_{k} 1_{B_{k}}\right\|_{L^{p}}
$$

where B_{k} and \tilde{B}_{k} are balls for all k such that $\tilde{B}_{k} \subset 2 B_{k}$ (the ball with the same center as B_{k} but with twice its radius).

Hint: use the converse of Hölder's inequality and maximal function, you may use the fact that if h^{*} is a maximal function of h, then

$$
\left\|h^{*}\right\|_{L^{p}} \leq C\|h\|_{L^{p}} \quad \text { for } p>1 .
$$

Question 8 [20 marks] For at most Four (4) of the following statements, prove or disprove each of the statement considered.
(1) Let a_{n}, r_{n} be a nonnegative sequence that converges to $a>0$ and $r>0$ respectively. Then $\lim _{n \rightarrow \infty} a_{n}^{r_{n}}=a^{r}$.
(2) Let f be continuous function on $[a, b]$ such that it is of bounded variation on $[a, b]$. If f is absolutely continuous on all $[c, d]$ with $[c, d] \subset(a, b)$, then f is absolutely continuous on $[a, b]$.
(3) Let $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ be a bounded sequence and $\left\{b_{n}\right\}_{n \in \mathbb{N}}$ be a convergence sequence that converges to b. Then

$$
\liminf _{n \rightarrow \infty} a_{n} b_{n}=b \liminf _{n \rightarrow \infty} a_{n} .
$$

(4) Let $f \in C^{\infty}[a, b]$ and $g \in B V[a, b]$. Then $f g \in B V$ and $(f g)^{\prime}=f^{\prime} g+f g^{\prime}$.
(5) Uniform limit of a sequence of absolutely continuous functions on an interval $[a, b]$ is also absolutely continuous.
(6) Let f be an integrable function on an open interval (a, b) such that

$$
\int_{a}^{b} f \phi^{\prime} d x=0 \text { for all } \phi \in C_{c}^{\infty}(a, b)
$$

the space of infinitely differentiable function with compact support in (a, b). Then f is a constant.

