Ph.D. Qualifying Examination 2023 January (Analysis)

Answer all the following.

Question 1 [12 marks]

<u>Answer only true or false</u> for each of the following statements. 1 mark will be deducted for each wrong answer.

(a) If a function f is integrable on \mathbb{R} , then

$$\int_{a}^{b} f(x)(\sin x)^{k} dx \to 0 \text{ as } k \to \infty.$$

(b) If $(x_0, y_0) \in \mathbb{R}^2$ and $f : \mathbb{R}^2 \to \mathbb{R}$ such that

$$\lim_{x \to x_0} f(x, y) = g(y) \text{ for all } y \text{ and } \lim_{y \to y_0} g(y) = l$$

then $\lim_{(x,y)\to(x_0,y_0)} f(x,y) = l.$

- (c) Let $f, g : \mathbb{R} \to \mathbb{R}$ be real analytic at x_0 . Then their product f(x)g(x) is also analytic at x_0 .
- (d) Let $\{a_n\}$ be a sequence of nonzero real numbers. Then

$$\lim_{n \to \infty} |a_{n+1}/a_n| = r \quad \text{implies} \ \limsup_{n \to \infty} |a_n|^{1/n} = r.$$

- (e) Let $\{a_k\}$ be a sequence in \mathbb{R} such that $\sum_{j=1}^{\infty} a_{\sigma(j)}$ for all permutations σ on \mathbb{N} . Then the series converges absolutely.
- (f) Let μ, ν be Borel measures on \mathbb{R}^n such that $\nu(E) = 0$ whenever $\mu(E) = 0$ $E \subset \mathbb{R}^n$. Then for all $\varepsilon > 0$, there exists $\delta > 0$ such that $\nu(E) < \varepsilon$ whenever $\mu(E) < \delta$.

Question 2 [8 marks]

Show that the function $f(z) = \sum_{n=1}^{\infty} 1/n^z$ is analytic on $A = \{z \in \mathbb{C} : Rez > 1\}.$

Question 3 [8 marks]

Let $f : \mathbb{C} \to \mathbb{C}$ be analytic and $\mathcal{D} = \{(x, y) : x^2 + y^2 \leq 1\}$. Show that the function $F(x, y) = f(x + yi) \mathbb{1}_{\mathcal{D}}(x, y)$ is Lebesgue measurable on \mathbb{R}^2 and

$$f(0) = \int_{\mathbb{R}^2} F(x, y) dx dy / \pi.$$

Question 4 [10 marks]

Let f_n and w be measurable functions on \mathbb{R}^N such that $\int |f_n(x)|^p |w(x)| dx \leq M$ for all nwhere $0 . Suppose <math>f_n \to f$ a.e.. Show that

$$\int (|f_n(x)|^p - |f(x)|^p - |f_n(x) - f(x)|^p)|w(x)|dx \to 0 \text{ as } n \to \infty.$$

Question 5 [8 marks]

Let f be analytic on an open set $U \subset \mathbb{C}$ and $z_0 \in U$ with $f'(z_0) \neq 0$. Show that if γ is a sufficiently small circle centered at z_0 in anti-clockwise direction, then

$$\frac{2\pi i}{f'(z_0)} = \int_{\gamma} \frac{1}{f(z) - f(z_0)} dz.$$

Question 6 [18 marks]

Let $f : \Omega \to \mathbb{R}^n$ be such that f is continuously differentiable where Ω is a bounded open connected set in \mathbb{R}^n . For each $t \in \mathbb{R}$ define $f_t(x) = f(x) + tx$. Let \mathcal{D} be any open connected set in Ω such that $\overline{\mathcal{D}} \subset \Omega$. Show that f_t is injective on \mathcal{D} for sufficiently large t and $f(\partial \mathcal{D}) = \partial f(\mathcal{D})$.

Next, suppose $g: \Omega \to \mathbb{R}^n$ that is continuously differentiable with g(x) = f(x) for $x \in \partial \mathcal{D}$. Show that

$$\int_{\mathcal{D}} |J_g| dx = \int_{\mathcal{D}} |J_f| dx \text{ where } J_g, J_f \text{ are Jacobians of } f \text{ and } g \text{ respectively.}$$

Question 7 [16 marks]

Let $\{a_k\}$ be a sequence of nonegative real numbers and $1 \leq p < \infty$. Show that there exists a constant C > 0 independent of the above sequence such that

$$\left\|\sum_{k=1}^{\infty} a_k \mathbf{1}_{\tilde{B}_k}\right\|_{L^p} \le C \left\|\sum_{k=1}^{\infty} a_k \mathbf{1}_{B_k}\right\|_{L^p}$$

where B_k and \tilde{B}_k are balls for all k such that $\tilde{B}_k \subset 2B_k$ (the ball with the same center as B_k but with twice its radius).

Hint: use the converse of Hölder's inequality and maximal function, you may use the fact that if h^* is a maximal function of h, then

$$||h^*||_{L^p} \le C ||h||_{L^p}$$
 for $p > 1$.

Question 8 [20 marks] For at most Four (4) of the following statements, prove or disprove each of the statement considered. [20]

- (1) Let a_n, r_n be a nonnegative sequence that converges to a > 0 and r > 0 respectively. Then $\lim_{n \to \infty} a_n^{r_n} = a^r$.
- (2) Let f be continuous function on [a, b] such that it is of bounded variation on [a, b]. If f is absolutely continuous on all [c, d] with [c, d] ⊂ (a, b), then f is absolutely continuous on [a, b].
- (3) Let $\{a_n\}_{n\in\mathbb{N}}$ be a bounded sequence and $\{b_n\}_{n\in\mathbb{N}}$ be a convergence sequence that converges to b. Then

$$\liminf_{n \to \infty} a_n b_n = b \liminf_{n \to \infty} a_n.$$

- (4) Let $f \in C^{\infty}[a, b]$ and $g \in BV[a, b]$. Then $fg \in BV$ and (fg)' = f'g + fg'.
- (5) Uniform limit of a sequence of absolutely continuous functions on an interval [a, b] is also absolutely continuous.
- (6) Let f be an integrable function on an open interval (a, b) such that

$$\int_{a}^{b} f \phi' dx = 0 \text{ for all } \phi \in C_{c}^{\infty}(a, b)$$

the space of infinitely differentiable function with compact support in (a, b). Then f is a constant.