Ph.D. Qualifying Examination 2024 January (Analysis)

A closed book paper with helpsheet. Do all the questions. Theorems/results used should be clearly stated

Question 1 [12 marks]

Answer only true or false for each of the following statements.
(a) The product of absolutely continuous functions on $[a, b]$ is also absolutely continuous.
(b) For any $f \in L^{p}\left(\mathbb{R}^{n}\right), g \in L^{q}\left(\mathbb{R}^{n}\right), 1<p, q<\infty$ such that $1 / p+1 / q=1$, the convolution of f and g is continuous.
(c) The uniform limit of absolutely continuous functions on $[a, b]$ is also an absolutely continuous function.
(d) Any open set in \mathbb{R}^{n} is the union of at most countable union of open cubes that are pairwise disjoint.
(e) The function $\sum_{k \in \mathbb{N}} e^{-k z}$ is analytic on $\{z \in \mathbb{C}: \operatorname{Re} z>0\}$.
(f) Limit (pointwise) of a sequence of convex functions on an interval I is also convex (assuming the limit function is finite everywhere).
(g) Let f, g, h be measurable functions on \mathbb{R}^{n} and $1<p, q<\infty$. If $\frac{1}{p}+\frac{1}{q}=1$, then

$$
\int|f g h| d x \leq\left(\int|f|^{p}|h| d x\right)^{1 / p}\left(\int|g|^{q}|h| d x\right)^{1 / q} .
$$

(h) Let f be a continuous function on $[a, b]$ such that it is of bounded variation on $[a, b]$. If f is absolutely continuous on all $[c, d]$ with $[c, d] \subset(a, b)$, then f is absolutely continuous on $[a, b]$.

Question 2 [8 marks]

Let K be a compact metric space and $f_{n}: K \rightarrow \mathbb{R}$ be an increasing sequence (i.e., $f_{n+1}(x) \geq$ $f_{n}(x)$ for all n and x) of continuous functions that converges to a function f everywhere on K. If f is also continuous on $[a, b]$, show that f_{n} converges to f uniformly.

Question 3 [6 marks]

Let f be a differentiable function on $[a, b]$ such that its derivative never vanishes. Show that $f^{\prime}(x) f^{\prime}(y)>0$ for all $x, y \in[a, b]$.

Question 4 [10 marks]

Let D be the open unit disk in \mathbb{C} and $f: D \rightarrow \mathbb{C}$ be analytic. If there exists $z_{0} \in \mathbb{C}$ such that $\left|f(z)-z_{0}\right| \leq|z| / 2$ for all z, show that

$$
\frac{\left|f^{\prime}(z)\right|}{1-4|f(z)-f(0)|^{2}} \leq \frac{1}{2\left(1-|z|^{2}\right)} \text { for all } z \in D
$$

Question 5 [12 marks]

Let f, g be locally integrable functions on \mathbb{R}^{n} such that

$$
\inf _{a \in \mathbb{R}} \int_{B}|f(x)-a| d x \leq 2 \int_{B}|g(x)| d x
$$

for all balls B in \mathbb{R}^{n}. Show that there exists a constant c such that

$$
\int_{\mathbb{R}^{n}}|f(x)-c| d x \leq 2 \int_{\mathbb{R}^{n}}|g(x)| d x
$$

(Of course, RHS may be infinite!)

Question 6 [10 marks]

Let $g:[0, \infty) \rightarrow[0, \infty)$ be a continuous non-decreasing concave function with $g(0)=0$ and let $f_{n} \rightarrow f$ a.e. on a measurable set E. If $\int_{E} g\left(\left|f_{n}\right|\right) d x \leq M<\infty$ for all $n \in \mathbb{N}$. Show that for any measurable set $F \subset E$,

$$
\lim _{n \rightarrow \infty} \int_{F} g\left(\left|f_{n}-f\right|\right)-g\left(\left|f_{n}\right|\right)+g(|f|) d x=0
$$

Question 7 [10 marks]

Compute $\int_{-\infty}^{\infty} \frac{\sin 2 x}{x} d x$.

Question 8 [7 marks]

Let $f: E \subset \mathbb{R} \rightarrow \mathbb{R}$ be a measurable function. If $g:[a, b] \rightarrow E$ is 1-1 with g^{-1} being absolutely continuous, show that $f \circ g:[a, b] \rightarrow \mathbb{R}$ is also measurable.

Question 9 [25 marks]

For at most five (5) of the following statements, prove or disprove each of the statement considered.
(a) Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be such that $\liminf _{x \rightarrow x_{0}} f(x) \geq f\left(x_{0}\right)$ for all $x_{0} \in \mathbb{R}^{n}$, then f is Borel measurable.
(b) Let μ, ν be Borel measures on \mathbb{R}^{n} such that $\nu(E)=0$ whenever $\mu(E)=0 E \subset \mathbb{R}^{n}$. Then for all $\varepsilon>0$, there exists $\delta>0$ such that $\nu(E)<\varepsilon$ whenever $\mu(E)<\delta$.
(c) Let $\left\{a_{k}\right\}$ be a sequence in \mathbb{R} such that $\sum_{j=1}^{\infty} a_{\sigma(j)}$ converges for all permutations σ on \mathbb{N}. Then the series converges absolutely.
(d) Let a_{n}, r_{n} be two nonnegative sequences that converges to $a>0$ and $r>0$ respectively. Then $\lim _{n \rightarrow \infty} a_{n}^{r_{n}}=a^{r}$.
(e) Let f, g be nonnegative measurable functions on a measurable set E such that g is integrable on E. If

$$
t \int_{\{f>t\}} g d x \leq C \text { for all } t>0
$$

then

$$
\int_{E} f^{p} g d x<\infty \text { for all } 0<p<1
$$

(f) Consider a boundary value problem of a 2 nd order linear ODE

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=f(x), \quad y(a)=y_{1}, y(b)=y_{2},
$$

where $y_{1}, y_{2} \in \mathbb{R}$. If all functions p, q, f are continuous on $[a, b]$, then exactly one of the following holds:

1. no solution;
2. unique solution;
3. infinite number of solutions.
(g) Let f be a continuous function on an open interval (a, b) such that

$$
\int_{a}^{b} f \phi^{\prime} d x=0 \text { for all } \phi \in C_{c}^{\infty}(a, b)
$$

the space of infinitely differentiable functions with compact support in (a, b). Then f is a constant.

