NATIONAL UNIVERSITY OF SINGAPORE

Ph.D. Qualifying Examination

Year 2021-2022 Semester I

Part I: Scientific Computing

Question 1 [20 marks] Let $A, B \in \mathbf{R}^{4 \times 4}$. Assume that $B^T A$ can be decomposed into $B^T A = U \Sigma V^T$,

where $U, V \in \mathbf{R}^{4 \times 4}$ are two known orthogonal matrices, and $\Sigma = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & -3 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$.

Find an orthogonal matrix $Q \in \mathbf{R}^{4 \times 4}$ such that

$$\|A - BQ\|_F \le \|A - BX\|_F$$

for all orthogonal matrices $X \in \mathbf{R}^{4 \times 4}$.

Question 2 [15 marks]

Assume that the formula

$$I(f) = \sum_{i=0}^{6} A_i f(x_i)$$

approximating $\int_{-1}^{1} f(x) dx$ is exact for all polynomials of degree at most 6 and the distinct nodes x_i $(i = 0, 1, \dots, 6)$ are symmetrically placed about the origin, compute the error

$$E(x^{7}) = \int_{-1}^{1} x^{7} dx - \sum_{i=0}^{6} A_{i} x_{i}^{7}.$$

Question 3 [15 marks]

Consider solving numerically a well-posed initial value problem

$$y' = f(t, y), \ a \le t \le b,$$

$$y(a) = \alpha,$$

using Taylor's method of order n, with step sizes h and h/2, respectively, where $h = \frac{b-a}{N}$ for some positive integer N. For $j = 0, 1, \dots, N$, let y_j^h and $y_{2j}^{h/2}$ be the resulting approximations to y(a+jh) using step sizes h and h/2, respectively. It is known that

$$y_j^h - y(a+jh) = \mathbf{O}(h^n), \ j = 0, 1, \cdots, N.$$

Show that the quantity

$$\frac{1}{2^n - 1} |y_j^h - y_{2j}^{h/2}|$$

gives an estimate for the absolute error in $y_{2j}^{h/2}$ for $j = 1, \dots, N$.

Question 4 [15 marks]

Consider the differential equation

$$u_y + au_x = 0,$$

where a is a constant. Prove that $u(ih_x, jh_y)$ obtained by the characteristic method is the solution of the following finite difference scheme

$$u_{k,j+1} - u_{k,j} + \frac{as}{2}(u_{k+1,j} - u_{k-1,j}) - \frac{a^2s^2}{2}(u_{k-1,j} - 2u_{k,j} + u_{k+1,j}) = 0, \ s = h_y/h_x,$$

when $h_y/h_x = 1/a$, where $h_x > 0$ and $h_y > 0$ are constants.

Part II: Optimization

- 1. [15 marks] Let $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$ and $c \in \mathbb{R}^n$.
 - (a) Show that exactly one of the following two systems has a solution: **S1:** $Ax = b, x \ge 0, A^T y \le c, c^T x - b^T y + \alpha = 0$ and $\alpha \ge 0$, for
 - some $(x, y, \alpha) \in \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}$. **S2:** $A^T u + \gamma c \leq 0, Av - \gamma b = 0, b^T u + c^T v > 0, v \leq 0$ and $\gamma \leq 0$,
 - for some $(u, v, \gamma) \in \mathbb{R}^m \times \mathbb{R}^n \times \mathbb{R}$.
 - (b) Consider the following primal and dual problems:

$$\begin{array}{ll} \min & c^T x\\ s.t. & Ax = b, \ x \ge 0 \end{array}$$

and

$$\begin{array}{ll} \max & b^T y \\ s.t. & A^T y \le c. \end{array}$$

Show that both of the primal and dual problems have optimal solutions if and only if both of them are feasible.

2. [10 marks] Consider the following problem P:

$$\begin{array}{ll} \min & f(x) \\ s.t. & Ax \le b, \end{array}$$

a ()

where $f : \mathbb{R}^n \to \mathbb{R}$ is differentiable, $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$. Denote $A = \begin{pmatrix} A_1 \\ \vdots \\ A_m \end{pmatrix}$ where $A_i \in \mathbb{R}^{1 \times n}$. Let \bar{x} be a feasible solution to Problem

 $\langle A_m \rangle$ *P*. Denote $I = \{i : A_i \bar{x} = b_i\}$. Denote by A_I and b_I the submatrices consisting of *I* rows of *A* and *b*. Suppose the rows of A_I are linearly independent. Let $g = -\nabla f(\bar{x})$ and consider the following problem \bar{P} :

min
$$\frac{1}{2} \|x - (\bar{x} + g)\|^2$$

s.t. $A_I x = b_I$.

- (a) Write the KKT conditions for Problem \overline{P} .
- (b) Determine a closed-form expression for the optimal solution \hat{x} to Problem \bar{P} .
- (c) Suppose that the given point \bar{x} happens to be a KKT point for \bar{P} . Is \bar{x} also a KKT point for P? If so, why? If not, under what additional conditions can you make this claim?
- 3. [10 marks] Consider the following problem:

$$\begin{array}{ll} \min & c^T x\\ s.t. & Ax = b\\ & x \in X \end{array}$$

where A is an $m \times n$ -matrix and X consists of a finite number of points in \mathbb{R}^n . For any $\lambda \in \mathbb{R}^m$, define

$$\theta(\lambda) = \min\{c^T x + \lambda^T (Ax - b) : x \in X\}.$$

Assume that the set $\{x \in conv(X) : Ax = b\}$ is nonempty, where conv(X) denotes the convex hull of X. Show that

$$\max\{\theta(\lambda) : \lambda \in \mathbb{R}^m\} = \min\{c^T x : Ax = b, x \in conv(X)\}.$$

-

END OF PAPER