NATIONAL UNIVERSITY OF SINGAPORE

Ph.D. Qualifying Examination
Year 2021-2022 Semester I

Part I: Scientific Computing

Question 1 [20 marks]
Let $A, B \in \mathbf{R}^{4 \times 4}$. Assume that $B^{T} A$ can be decomposed into

$$
B^{T} A=U \Sigma V^{T}
$$

where $U, V \in \mathbf{R}^{4 \times 4}$ are two known orthogonal matrices, and $\Sigma=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 0 & -3 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$.
Find an orthogonal matrix $Q \in \mathbf{R}^{4 \times 4}$ such that

$$
\|A-B Q\|_{F} \leq\|A-B X\|_{F}
$$

for all orthogonal matrices $X \in \mathbf{R}^{4 \times 4}$.

Question 2 [15 marks]
Assume that the formula

$$
I(f)=\sum_{i=0}^{6} A_{i} f\left(x_{i}\right)
$$

approximating $\int_{-1}^{1} f(x) d x$ is exact for all polynomials of degree at most 6 and the distinct nodes $x_{i}(i=0,1, \cdots, 6)$ are symmetrically placed about the origin, compute the error

$$
E\left(x^{7}\right)=\int_{-1}^{1} x^{7} d x-\sum_{i=0}^{6} A_{i} x_{i}^{7}
$$

Question 3 [15 marks]
Consider solving numerically a well-posed initial value problem

$$
\begin{aligned}
& y^{\prime}=f(t, y), a \leq t \leq b, \\
& y(a)=\alpha
\end{aligned}
$$

using Taylor's method of order n, with step sizes h and $h / 2$, respectively, where $h=\frac{b-a}{N}$ for some positive integer N. For $j=0,1, \cdots, N$, let y_{j}^{h} and $y_{2 j}^{h / 2}$ be the resulting approximations to $y(a+j h)$ using step sizes h and $h / 2$, respectively. It is known that

$$
y_{j}^{h}-y(a+j h)=\mathbf{O}\left(h^{n}\right), j=0,1, \cdots, N
$$

Show that the quantity

$$
\frac{1}{2^{n}-1}\left|y_{j}^{h}-y_{2 j}^{h / 2}\right|
$$

gives an estimate for the absolute error in $y_{2 j}^{h / 2}$ for $j=1, \cdots, N$.

Question 4 [15 marks]
Consider the differential equation

$$
u_{y}+a u_{x}=0,
$$

where a is a constant. Prove that $u\left(i h_{x}, j h_{y}\right)$ obtained by the characteristic method is the solution of the following finite difference scheme
$u_{k, j+1}-u_{k, j}+\frac{a s}{2}\left(u_{k+1, j}-u_{k-1, j}\right)-\frac{a^{2} s^{2}}{2}\left(u_{k-1, j}-2 u_{k, j}+u_{k+1, j}\right)=0, s=h_{y} / h_{x}$,
when $h_{y} / h_{x}=1 / a$, where $h_{x}>0$ and $h_{y}>0$ are constants.

Part II: Optimization

1. [15 marks] Let $A \in R^{m \times n}, b \in R^{m}$ and $c \in R^{n}$.
(a) Show that exactly one of the following two systems has a solution:

S1: $A x=b, x \geq 0, A^{T} y \leq c, c^{T} x-b^{T} y+\alpha=0$ and $\alpha \geq 0$, for some $(x, y, \alpha) \in R^{n} \times R^{m} \times R$.
S2: $A^{T} u+\gamma c \leq 0, A v-\gamma b=0, b^{T} u+c^{T} v>0, v \leq 0$ and $\gamma \leq 0$, for some $(u, v, \gamma) \in R^{m} \times R^{n} \times R$.
(b) Consider the following primal and dual problems:

$$
\begin{array}{cl}
\min & c^{T} x \\
\text { s.t. } & A x=b, x \geq 0
\end{array}
$$

and

$$
\begin{array}{cl}
\max & b^{T} y \\
\text { s.t. } & A^{T} y \leq c .
\end{array}
$$

Show that both of the primal and dual problems have optimal solutions if and only if both of them are feasible.
2. [10 marks] Consider the following problem P :

$$
\begin{array}{cl}
\min & f(x) \\
\text { s.t. } & A x \leq b,
\end{array}
$$

where $f: R^{n} \rightarrow R$ is differentiable, $A \in R^{m \times n}$ and $b \in R^{m}$. Denote $A=\left(\begin{array}{c}A_{1} \\ \vdots \\ A_{m}\end{array}\right)$ where $A_{i} \in R^{1 \times n}$. Let \bar{x} be a feasible solution to Problem
P. Denote $I=\left\{i: A_{i} \bar{x}=b_{i}\right\}$. Denote by A_{I} and b_{I} the submatrices consisting of I rows of A and b. Suppose the rows of A_{I} are linearly independent. Let $g=-\nabla f(\bar{x})$ and consider the following problem \bar{P} :

$$
\begin{array}{cl}
\min & \frac{1}{2}\|x-(\bar{x}+g)\|^{2} \\
\text { s.t. } & A_{I} x=b_{I} .
\end{array}
$$

(a) Write the KKT conditions for Problem \bar{P}.
(b) Determine a closed-form expression for the optimal solution \hat{x} to Problem \bar{P}.
(c) Suppose that the given point \bar{x} happens to be a KKT point for \bar{P}. Is \bar{x} also a KKT point for P ? If so, why? If not, under what additional conditions can you make this claim?
3. [10 marks] Consider the following problem:

$$
\begin{array}{cl}
\min & c^{T} x \\
\text { s.t. } & A x=b \\
& x \in X
\end{array}
$$

where A is an $m \times n$-matrix and X consists of a finite number of points in R^{n}. For any $\lambda \in R^{m}$, define

$$
\theta(\lambda)=\min \left\{c^{T} x+\lambda^{T}(A x-b): x \in X\right\} .
$$

Assume that the set $\{x \in \operatorname{conv}(X): A x=b\}$ is nonempty, where $\operatorname{conv}(X)$ denotes the convex hull of X. Show that

$$
\max \left\{\theta(\lambda): \lambda \in R^{m}\right\}=\min \left\{c^{T} x: A x=b, x \in \operatorname{conv}(X)\right\} .
$$

