NATIONAL UNIVERSITY OF SINGAPORE, DEPARTMENT OF MATHEMATICS
Ph.D. Qualifying Examination
Year 2022-2023 Semester I

Time allowed: 3 hours

Part I: Scientific Computing

1. [15 marks]

Suppose $A=\left(a_{i j}\right) \in \mathbf{R}^{n \times n}$ is strictly row diagonally dominant. Prove that the Jacobi's method and the Gauss-Seidel method for linear system $A x=b$ converges.
2. [15 marks]

Give an explanation why the initial value problem

$$
\frac{d y}{d x}=-\sqrt{\left|1-y^{2}\right|}, \quad y(0)=1
$$

is not well-posed.
3. [20 marks]

Let $h>0$ and $x_{n}=n h$. Find out the order of the following numerical method

$$
y_{0}=0, \quad y_{n+1}=\left(x_{n}+y_{n}+1\right) e^{h}-\left(x_{n}+h+1\right)
$$

applied to the differential equation

$$
y^{\prime}=y+x, \quad 0 \leq x \leq 1, \quad y(0)=0
$$

4. [15 marks]

The unconditionally stable finite difference scheme

$$
\begin{equation*}
\frac{h^{2}}{2 \tau}\left(u_{i, j+1}-u_{i, j-1}\right)-\left(u_{i+1, j}-2\left(\theta u_{i, j+1}+(1-\theta) u_{i, j-1}\right)+u_{i-1, j}\right)=0 \tag{1}
\end{equation*}
$$

is used to approximate the equation

$$
\begin{equation*}
\frac{\partial U}{\partial t}-\frac{\partial^{2} U}{\partial x^{2}}=0 \tag{2}
\end{equation*}
$$

at the grid point $\left(x_{i}, t_{j}\right)$ with

$$
x_{i}=i h, \quad t_{j}=j \tau, \quad \tau=\frac{1}{3} h^{r}, \quad r>0,
$$

where $h>0$ is the step size in x, r and θ are constants. Find out all θ and r such that the difference scheme (1) is consistent with the equation (2).

Part II: Optimization

1. [10 marks] Let A be a $p \times n$ matrix and B be a $q \times n$ matrix. Show that exactly one of the following systems has a solution:

System 1: $A x<0, B x=0$ for some $x \in R^{n}$.
System 2: $A^{T} u+B^{T} v=0$ for some (u, v) with $u \neq 0, u \geq 0$.
2. [15 marks]
(a) Let $f(x)=h(g(x))=h\left(g_{1}(x), \ldots, g_{k}(x)\right)$, where $h: R^{k} \rightarrow R$ is convex and nonincreasing, i.e. $h(u) \geq h(v)$ whenever $u \leq v$, and $g_{i}: R^{n} \rightarrow R, i=1, \ldots, k$, are convex. (Here, no differentiability of h and g is assumed). Let $\operatorname{dom} f=\{x \in \operatorname{dom} g \mid g(x) \in \operatorname{dom} h\}$. Show that f is convex on its domain.
(b) Show that $f(x)=-\sqrt{x_{1} x_{2}}$ is convex in $x=\left(x_{1}, x_{2}\right) \in R_{++}^{2}$, where $R_{++}^{k}:=\left\{x \in R^{k} \mid x>\right.$ $0\}$.
(c) Show that $f(x, u)=x^{T} x / u$ is convex in $(x, u) \in R^{n} \times R_{++}$.
(d) Show that $f(x, u, v)=-\sqrt{u v-x^{T} x}$ is convex on $\operatorname{dom} f=\left\{(x, u, v) \mid u v>x^{T} x ; x \in\right.$ $\left.R^{n} ; u, v \in R_{++}\right\}$.
3. [10 marks] Consider the problem

$$
\begin{array}{cl}
\text { minimize } & f(x) \tag{3}\\
\text { subject to } & A x=b,
\end{array}
$$

where $f: R^{n} \rightarrow R$ is differentiable and convex, and $A \in R^{m \times n}$ with $\operatorname{rank} A=m$. Let

$$
\phi(x)=f(x)+\alpha\|A x-b\|_{2}^{2}
$$

where $\alpha>0$ is a parameter. Suppose \bar{x} minimizes ϕ. Show that $f(\bar{x})+2 \alpha\|A \bar{x}-b\|_{2}^{2}$ is a lower bound on the optimal value of the problem (3), that is,

$$
f(\bar{x})+2 \alpha\|A \bar{x}-b\|_{2}^{2} \leq f(x)
$$

for all x satisfying $A x=b$.
(Hint: Find, from \bar{x}, a suitable feasible solution to the dual of (3).)

