NATIONAL UNIVERSITY OF SINGAPORE, DEPARTMENT OF MATHEMATICS

Ph.D. Qualifying Examination Year 2022-2023 Semester I

Time allowed : 3 hours

Part I: Scientific Computing

1. [15 marks]

Suppose $A = (a_{ij}) \in \mathbf{R}^{n \times n}$ is strictly row diagonally dominant. Prove that the Jacobi's method and the Gauss-Seidel method for linear system Ax = b converges.

2. [15 marks]

Give an explanation why the initial value problem

$$\frac{dy}{dx} = -\sqrt{|1-y^2|}, \qquad y(0) = 1,$$

is not well-posed.

3. [20 marks]

Let h > 0 and $x_n = nh$. Find out the order of the following numerical method

$$y_0 = 0, \quad y_{n+1} = (x_n + y_n + 1)e^h - (x_n + h + 1),$$

applied to the differential equation

$$y' = y + x, \quad 0 \le x \le 1, \quad y(0) = 0.$$

4. [15 marks]

The unconditionally stable finite difference scheme

$$\frac{h^2}{2\tau}(u_{i,j+1} - u_{i,j-1}) - (u_{i+1,j} - 2(\theta u_{i,j+1} + (1-\theta)u_{i,j-1}) + u_{i-1,j}) = 0$$
(1)

is used to approximate the equation

$$\frac{\partial U}{\partial t} - \frac{\partial^2 U}{\partial x^2} = 0 \tag{2}$$

at the grid point (x_i, t_j) with

$$x_i = ih, \quad t_j = j\tau, \quad \tau = \frac{1}{3}h^r, \quad r > 0,$$

where h > 0 is the step size in x, r and θ are constants. Find out all θ and r such that the difference scheme (1) is consistent with the equation (2).

Part II: Optimization

1. [10 marks] Let A be a $p \times n$ matrix and B be a $q \times n$ matrix. Show that exactly one of the following systems has a solution:

System 1: Ax < 0, Bx = 0 for some $x \in \mathbb{R}^n$. System 2: $A^T u + B^T v = 0$ for some (u, v) with $u \neq 0, u \ge 0$.

- 2. [15 marks]
 - (a) Let $f(x) = h(g(x)) = h(g_1(x), \ldots, g_k(x))$, where $h : R^k \to R$ is convex and nonincreasing, i.e. $h(u) \ge h(v)$ whenever $u \le v$, and $g_i : R^n \to R$, $i = 1, \ldots, k$, are convex. (Here, no differentiability of h and g is assumed). Let dom $f = \{x \in \text{dom}g \mid g(x) \in \text{dom}h\}$. Show that f is convex on its domain.
 - (b) Show that $f(x) = -\sqrt{x_1 x_2}$ is convex in $x = (x_1, x_2) \in \mathbb{R}^2_{++}$, where $\mathbb{R}^k_{++} := \{x \in \mathbb{R}^k \mid x > 0\}$.
 - (c) Show that $f(x, u) = x^T x/u$ is convex in $(x, u) \in \mathbb{R}^n \times \mathbb{R}_{++}$.
 - (d) Show that $f(x, u, v) = -\sqrt{uv x^T x}$ is convex on dom $f = \{(x, u, v) \mid uv > x^T x; x \in R^n; u, v \in R_{++}\}.$
- 3. [10 marks] Consider the problem

$$\begin{array}{ll}\text{minimize} & f(x) & (3)\\ \text{subject to} & Ax = b, \end{array}$$

where $f: \mathbb{R}^n \to \mathbb{R}$ is differentiable and convex, and $A \in \mathbb{R}^{m \times n}$ with rank A = m. Let

$$\phi(x) = f(x) + \alpha ||Ax - b||_2^2,$$

where $\alpha > 0$ is a parameter. Suppose \bar{x} minimizes ϕ . Show that $f(\bar{x}) + 2\alpha ||A\bar{x} - b||_2^2$ is a lower bound on the optimal value of the problem (3), that is,

$$f(\bar{x}) + 2\alpha ||A\bar{x} - b||_2^2 \le f(x)$$

for all x satisfying Ax = b.

(*Hint:* Find, from \bar{x} , a suitable feasible solution to the dual of (3).)