NATIONAL UNIVERSITY OF SINGAPORE, DEPARTMENT OF MATHEMATICS

Ph.D. Qualifying Examination Year 2023-2024 Semester I Computational Mathematics

Time allowed : 3 hours

Instructions to Candidates

- 1. Use A4 size paper and pen (blue or black ink) to write your answers.
- 2. Write down your student number clearly on the top left of every page of the answers.
- Write on one side of the paper only. Start each question on a NEW page. Write the question number and page number on the top right corner of each page (e.g. Q1P1, Q1P2, ..., Q2P1, ...).
- 4. This examination paper comprises two parts: Part I contains FOUR (4) questions and Part II contains THREE (3) questions. Answer ALL questions.
- 5. The total mark for this paper is ONE HUNDRED (100).
- 6. This is a CLOSED BOOK examination: you are allowed to bring a help sheet.
- 7. You may use any calculator. However, you should lay out systematically the various steps in the calculations.

Part I: Scientific Computing

1. [15 marks]

Consider the linear system Ax = b, where A is the following 3×3 matrix:

$$A = \begin{pmatrix} 3 & -2 & 0\\ -1 & 3 & -2\\ 0 & -1 & 3 \end{pmatrix}$$

Find the optimal relaxation factor to achieve fastest convergence rate in the SOR (successive over-relaxation) method.

2. [20 marks]

Consider the ODE system

$$u'(t) = iHu(t),$$

$$u(0) = u_0,$$

where $H \in \mathbb{R}^{n \times n}$ is a symmetric matrix and $u : \mathbb{R}_+ \to \mathbb{R}^n$.

- (a) Write down the forward Euler method for the ODE system. Use u_n to denote the solution at the *n*th time step and Δt to denote the time step.
- (b) Show that there exists a constant C depending only on H such that the numerical solution satisfies

$$\|u(n\Delta t) - u_n\| \le CT\Delta t \cdot e^{CT\Delta t} \|u_0\|.$$

(c) Find a numerical scheme such that $||u_n|| = ||u_0||$ for all n > 0, where u_n denotes the numerical solution at the *n*th time step.

3. [15 marks]

Consider the partial differential equation

$$\frac{\partial u}{\partial t} = \frac{1}{\omega(x)} \frac{\partial}{\partial x} \left[\omega(x) \frac{\partial u}{\partial x} \right]$$
$$u(x,0) = u_0(x) > 0$$

with periodic boundary conditions u(x + 1) = u(x).

(a) Given a positive integer N, let $U_j(t)$, $j = 0, 1, \dots, N-1$ be the approximation of u(j/N, t). Consider the following finite difference method:

$$\frac{\mathrm{d}U_j}{\mathrm{d}t} = \frac{1}{\omega_j} \frac{\omega_{j+1/2}(U_{j+1} - U_j) - \omega_{j-1/2}(U_j - U_{j-1})}{\Delta x^2},$$
$$U_j(0) = u_0(j/N),$$

where

$$\omega_j = \omega(j/N), \quad \Delta x = 1/N, \quad U_{-1} = U_{N-1}, \quad U_N = U_0.$$

Show that this semidiscrete scheme satisfies

$$U_j(t) > 0, \qquad j = 0, 1, \cdots, N-1$$

for all t > 0.

(b) Show that the above semidiscrete scheme satisfies

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\sum_{j=0}^{N-1} \omega_j U_j(t) \log U_j(t) \right) \le 0.$$

(c) Find a fully discrete scheme such that

$$\begin{split} U_j^n > 0, \qquad \forall j = 0, 1, \cdots, N-1, \quad \forall n \ge 0, \\ \sum_{j=0}^{N-1} \omega_j U_j^{n+1} \log U_j^{n+1} \le \sum_{j=0}^{N-1} \omega_j U_j^n \log U_j^n, \quad \forall n \ge 0, \end{split}$$

where U_j^n is the approximation of $U_j(t_n)$ with t_n being the *n*th time step.

4. [15 marks]

Consider the linear advection equation

$$\frac{\partial u}{\partial t} + \frac{\partial u}{\partial x} = 0,$$

$$u(x,0) = u_0(x).$$

Below we assume that a uniform spatial grid is used to discretize the equation, and we use the U_j^n to denote the approximation of $u(x_j, t_n)$, with x_j being the *j*th grid point and t_n being the *n*th time step. Apply von Neumann stability analysis to the numerical scheme

$$U_j^{n+1} = U_j^n - \frac{\Delta t}{\Delta x} (U_{j+1/2}^n - U_{j-1/2}^n),$$

where

$$U_{j+1/2}^n = U_j^n + \frac{U_{j+1}^n - U_{j-1}^n}{4}.$$

Show that the scheme is unconditionally unstable. [Hint: Focus on the modes with small frequencies.]

Part II: Optimization

- 1. [12 marks]
 - Let $f: \mathbb{R}^n \to \mathbb{R}$ is convex. Prove the statements below:
 - (i) For any bounded set $S \subset \mathbb{R}^n$, f is bounded from below and above on S.
 - (ii) For any bounded set $S \subset \mathbb{R}^n$, there exists a constant c such that $|f(x) f(y)| \le c ||x y||$ for all $x, y \in S$.
- 2. [8 marks]

Let $f_j : R \to R, j = 1, ..., n$, be differentiable. Consider the problem:

min
$$\sum_{j=1}^{n} f_j(x_j)$$

s.t.
$$\sum_{j=1}^{n} x_j = 1$$

 $x_j \ge 0$ for $j = 1, \dots, n$

Suppose that $\bar{x} = (\bar{x}_1, \ldots, \bar{x}_n)^T \ge 0$ solves the problem. Letting $\delta_j = df_j(\bar{x}_j)/dx_j$, show that there exists a scalar κ such that

$$\delta_j \ge \kappa$$
 and $(\delta_j - \kappa)\bar{x}_j = 0$ for $j = 1, \dots, n$.

3. [15 marks]

Consider the following problem

$$\begin{array}{ll} \min & f(x) \\ s.t. & Ax = b \\ & x \in X. \end{array}$$

where $f : \mathbb{R}^n \to \mathbb{R}$ is concave, A is a $m \times n$ -matrix and $X = \operatorname{conv}(x_1, \ldots, x_p)$ is the convex hull with $x_1, \ldots, x_p \in \mathbb{R}^n$ as its vertices. Let $\theta(u) = \inf\{f(x) + u^T(Ax - b) : x \in X\}$ for $u \in \mathbb{R}^m$ be the Lagrangian dual function.

- (i) Show that $\theta : \mathbb{R}^m \to \mathbb{R}$ is concave.
- (ii) For each vertex x_i of X, let U_i be the set of $u \in \mathbb{R}^m$ such that

$$x_i \in \operatorname{argmin}\{f(x) + u^T(Ax - b) : x \in X\}.$$

Express $\theta(u)$ for $u \in U_i$ explicitly in terms of x_i and show that the restriction of θ to U_i , $\theta|_{U_i}$, is an affine function, that is, in the form of $\alpha + h^T u$ for some $\alpha \in R$ and $h \in R^m$.

- (iii) Show $\bigcup_{i=1}^{p} U_i = R^m$, that is, for any $u \in R^m$ there exists U_i containing u.
- (iv) For each $u \in \mathbb{R}^m$, express the subdifferential $\partial \theta(u)$ explicitly in terms of x_1, \ldots, x_p , and justify your answer.