NATIONAL UNIVERSITY OF SINGAPORE, DEPARTMENT OF MATHEMATICS

Ph.D. Qualifying Examination Year 2022-2023 Semester II Computational Mathematics

Time allowed : 3 hours

Instructions to Candidates

- 1. Use A4 size paper and pen (blue or black ink) to write your answers.
- 2. Write down your student number clearly on the top left of every page of the answers.
- Write on one side of the paper only. Start each question on a NEW page. Write the question number and page number on the top right corner of each page (e.g. Q1P1, Q1P2, ..., Q2P1, ...).
- 4. This examination paper comprises two parts: Part I contains FOUR (4) questions and Part II contains THREE (3) questions. Answer ALL questions.
- 5. The total mark for this paper is ONE HUNDRED (100).
- 6. This is a CLOSED BOOK examination: you are allowed to bring a help sheet.
- 7. You may use any calculator. However, you should lay out systematically the various steps in the calculations.

Part I: Scientific Computing

1. [15 marks]

Suppose $A = (a_{ij}) \in \mathbf{R}^{n \times n}$ is symmetric positive definite. Prove that the Gauss-Seidel method for linear system Ax = b converges.

2. [15 marks]

CG method for Ax = b with A symmetric can be stated as follows.

Algorithm 1 (The CG method) Given $x_0 \in \mathbf{R}^n$, $d_0 = -(Ax_0 - b) = -r_0$. For $k = 0, 1, 2, \cdots$, $\alpha_k = -\frac{(Ax_k - b)^T d_k}{d_k^T A d_k} = -\frac{r_k^T d_k}{d_k^T A d_k};$ $x_{k+1} = x_k + \alpha_k d_k;$ $r_{k+1} = Ax_{k+1} - b;$ $\beta_k = \frac{r_{k+1}^T A d_k}{d_k^T A d_k};$ $d_{k+1} = -r_{k+1} + \beta_k d_k.$

Denote the linear space spanned by vectors y_1, y_2, \dots, y_m by $[y_1, y_2, \dots, y_m]$, i.e.,

$$[y_1, y_2, \cdots, y_m] = \{y \in \mathbf{R}^n, y = \sum_{i=1}^m a_i y_i, a_i \in \mathbf{R}\}$$

Prove that for $m = 0, 1, \cdots$,

$$[d_0, d_1, \cdots, d_m] = [r_0, r_1, \cdots, r_m] = [r_0, Ar_0, \cdots, A^m r_0]$$

3. [20 marks]

Derive the most accurate linear 2-step method for the initial-value problem

$$y' = f(x, y), \quad a \le x \le b, \qquad y(a) = \alpha$$

4. [15 marks]

Show that the Midpoint method, the Modified Euler's method and Heun's method give the same approximations to the initial value problem

$$y' = -y + t + 1, \quad 0 \le t \le 1, \qquad y(0) = 1,$$

for any choice of h.

Part II: Optimization

1. [8 marks]

(i) Let S be a nonempty convex set in \mathbb{R}^n , and let $f: \mathbb{R}^n \to \mathbb{R}$ be defined as follows:

$$f(x) = \inf\{\|y - x\| : y \in S\}.$$

Show that f is convex.

- (ii) If the convexity of S is not assumed, is the function f defined in (i) still convex? Prove it if your answer is YES, or disprove it by giving a counterexample if your answer is NO.
- 2. [15 marks]

Consider the program

min
$$f(x)$$
 (1)
s.t. $g_i(x) \le 0, \quad i = 1, 2, ..., m,$

where $f: \mathbb{R}^n \to \mathbb{R}$ and $g_i: \mathbb{R}^n \to \mathbb{R}$, $i = 1, \ldots, m$, are differentiable functions.

(i) Suppose that at $\bar{x} \in \mathbb{R}^n$ there exists $d \in \mathbb{R}^n$ satisfying

$$\nabla f(\bar{x})^T d > 0, \quad \nabla g_i(\bar{x})^T d > 0 \quad i = 1, 2, \dots, m.$$

Can \bar{x} be an optimal solution to the program (1)? Justify your answer.

(ii) Suppose that at $\bar{x} \in \mathbb{R}^n$ there is no $d \in \mathbb{R}^n$ satisfying

$$\nabla f(\bar{x})^T d > 0, \quad \nabla g_i(\bar{x})^T d \ge 0 \quad i = 1, 2, \dots, m.$$

(a) Show that there exists $\lambda = (\lambda_1, \dots, \lambda_m) \ge 0$ satisfying

$$\nabla f(\bar{x}) + \sum_{i=1}^{m} \lambda_i \nabla g_i(\bar{x}) = 0.$$
⁽²⁾

(b) Is \bar{x} a KKT-point to the program (1)? Justify your answer.

- (iii) Suppose that $f: \mathbb{R}^n \to \mathbb{R}$ and $g_i: \mathbb{R}^n \to \mathbb{R}$, i = 1, ..., m, are convex. Show that \bar{x} is a minimizer of the function $f(x) + \sum_{i=1}^m \lambda_i g_i(x)$ for $x \in \mathbb{R}^n$, where λ satisfies (2).
- (iv) Suppose that $f : \mathbb{R}^n \to \mathbb{R}$ and $g_i : \mathbb{R}^n \to \mathbb{R}$, $i = 1, \ldots, m$, are convex. Find a lower bound of the optimal objective value of the program (1) in terms of λ and \bar{x} , by using the duality.
- 3. [12 marks]

Let $\theta(u) = \inf\{f(x) + u^T g(x) : x \in X\}$ be the dual function of the problem $\min f(x)$ subject to $g(x) \leq 0$ and $x \in X$. Assume that X is compact, $f : \mathbb{R}^n \to \mathbb{R}$ and $g : \mathbb{R}^n \to \mathbb{R}^m$ are continuous.

- (i) Show that the directional derivative θ'(u; d) of θ at u in the direction d is a continuous function of d.
 In the subquestions (ii) and (iii), suppose that the shortest subgradient ξ of θ at ū is not equal to zero.
- (ii) Show that $d = \overline{\xi}$ is an ascent direction of θ at \overline{u} .
- (iii) Show that there exists an $\delta > 0$ such that $\|\xi \overline{\xi}\| < \delta$ implies that $d = \xi$ is an ascent direction of θ at \overline{u} .