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1. Please write your matriculation/student number only. Do not write your name.

2. Including this page, the examination paper comprises 5 printed pages.

3. At the top right corner of every page of your answer script, write the question and page

numbers (eg. Q1 P1, Q1 P2, Q2 P1, . . . ).

4. This examination contains FIVE (5) questions. Answer all of them. Properly justify

your answers.

5. There is a total of ONE HUNDRED (100) points. The points for each question are

indicated at the beginning of the question.

6. This is an OPEN BOOK exam. Only non-programmable and non-graphing calculators are

allowed.

7. You are not allowed to use any other electronic device (such as tablet, laptop or phone).

You need to have your reference materials in hard copy with you.

8. A list containing information on the probability density / mass function, mean, variance

and moment generating functions of some common distributions has been provided on the

other side for possible consultation.

9. Please start each part of a question (i.e., (a), (b), etc.) on a new page.
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Q 1 (15 points) Let L ∈ N and Z/2LZ denote the integers {0, 1, . . . , 2L − 1} (equipped with

addition modulo 2L). Consider the set V = (Z/2LZ)d, that is, each v ∈ V is of the form

v = (v1, . . . , vd), with each vi ∈ Z/2LZ. For any element v ∈ V , let Neven(v) denote the number

of co-ordinates of v that are even numbers.

A particle starts moving on the set V according to the following rules. Let the particle be

at Xn ∈ V after n steps. Then, for the n + 1-th step, we pick a co-ordinate i uniformly at

random from the set {1, . . . , d} for possible updating. Then, with probability 1/2, the particle

stays at its current location (that is, we set Xn+1 = Xn), whereas with probability 1/2 the i-th

co-ordinate (Xn)i is updated to an independently and uniformly chosen element ∈ Z/2LZ (i.e.,

(Xn+1)i = U , where U is uniformly chosen from Z/2LZ and independent of everything else, and

(Xn+1)j = (Xn)j for j 6= i).

If the particle starts from (0, . . . , 0) ∈ V , then calculate the limit

lim
n→∞

E [Neven(Xn)] .

Q 2 (15 points) Let f : [0, 1] 7→ R be a continuous function. Let {Ui}∞i=0 be independent and

identically distributed (i.i.d.) random variables uniformly distributed on the interval [0, 1]. For

each N ≥ 1, define the random variable ΛN as

ΛN :=
1

N

N−1∑
j=0

f

(
j

N
+
Uj
N

)
.

If µ1 :=
∫ 1
0 f(x)dx and µ2 :=

∫ 1
0 f(x)2dx, then :

• (a) (6 points) Calculate E [ΛN ] in terms of µ1 and µ2.

• (b) (9 points) Calculate

(
limN→∞Var [ΛN ]

)
in terms of µ1 and µ2.

Q 3 (20 points) Answer each of the following questions.

• (a) (5 points) Let X ∼ N(0, σ2) be a normal random variable on R with mean zero and

variance σ2. For t > 0, calculate E[exp(−tX2)] in terms of t and σ.

• (b) (15 points) Let X ∼ Nd(0,Σ) denote a d-dimensional normal random variable with

mean 0 ∈ Rd and covariance matrix Σ, and ‖ · ‖2 denote the standard `2 norm on Rd. For

t > 0, calculate E
[
exp(−t‖X‖22)

]
in terms of t and the eigenvalues of Σ.

Q 4 (20 points) Consider a binary classification problem with a training sample D = {(xi, yi) ∈
Rd×{0, 1}, i = 1, . . . , n} and a predictor ĥn obtained as the output of the learning algorithm, i.e.

ĥn = A(D,H), where A is the algorithm (e.g. SGD for neural networks) and H is the hypothesis

class.

Given the training data and the hypothesis space, the generalization risk is given by R(ĥn) =

E(X,Y )∼µ

[
1Y 6=ĥn(X)

]
, where µ is the underlying probability distribution from which D is sampled.

The risk R(ĥn) is a random variable which depends on D, A, and H. Assume that the predictor
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ĥn is consistent, that is Remp(ĥn) = 1
n

∑n
i=1 1{yi 6=ĥn(xi)} = 0. In PAC learning we are interested

in its tail distribution, i.e. finding a bound which holds with large probability:

P(R(ĥn) ≥ ε) ≤ δ.

The basic idea is to set the probability of being misled to δ and find a suitable ε to the satisfy

the inequality above.

Consider the case of finite hypothesis space H = {h1, h2, . . . , hm}.

• (a) (6 points) Show that for all δ ∈ (0, 1), with probability at least 1− δ, we have

R(ĥn) ≤
log(m) + log(1δ )

n
.

• (b) (6 points) We say that a set C = {c1, c2, . . . , ck} ⊂ Rd is shattered by H if for any

{b1, b2, . . . , bk} ∈ {0, 1}d, there exists a function h ∈ H such that h(ci) = bi for all i ∈
{1, 2, . . . , k}. The VC dimension of H is defined by

VCdim(H) = max
C
{|C|, s.t. C is shattered by H},

where the max is taken over all subsets C ⊂ Rd, and |C| refers to the cardinality (number

of elements) of C. If for any k ≥ 1, there exists a set C that is shattered by H, we set

VCdim(H) =∞.

In the case of finite hypothesis space H = {h1, h2, . . . , hm}, show that V Cdim(H) ≥
log2(|H|), and give an example where the equality holds.

• (c) (8 points) Consider the hypothesis space H = {fa , a ∈ R}, where fa(x) = sin(ax) for

all x ∈ R. What is VCdim(H)?

Q 5 (30 points)

Consider a fully connected neural network given by

f(x) =

n∑
i=1

viσ(wTi x),

where x,wi ∈ Rd, vi ∈ R, and σ(z) = sin(z) is the sine activation function. We assume that

the weights wi’s are iid multivariate Gaussian random variables with identity covariance matrix,

i.e. wi ∼ N (0, I). Similarly, we assume that vi’s are iid Gaussian random variables with variance

1/n, i.e. vi ∼ N (0, 1/n). Hereafter, the expectation E will always be taken with respect to

random variables wi’s and vi’s.

• (a) (7 points) Let x ∈ Rd. What is E[f(x)] and Var[f(x)]? (Express Var[f(x)] in terms of

‖x‖, Sine, and some expectation over a one-dimensional standard Gaussian variable Z.)

• (b) (10 points) Is f(x) Gaussian? What is the distribution of f(x) in the limit n→∞?

• (c) (13 points) We restrict our analysis to the case where x ∈ Sd := {x ∈ Rd, s.t. ‖x‖ = 1}.
We define the Neural Kernel by k(x, x′) = αE[f(x)f(x′)], where α = (E[σ(Z)2])−1 (where

Z ∼ N (0, 1)).
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Show that the kernel k can be expressed in the form

k(x, x′) = a exp(xTx′) + b exp(−xTx′),∀x, x′ ∈ Sd,

for some constants a, b ∈ R (compute a, b explicitly).

Hint: use the Gaussian property E[ZG(Z)] = E[G′(Z)] satisfied by any function G such

that E[|G′(Z)|] <∞, where Z ∼ N (0, 1).

—– End of Paper —–
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• Bernoulli (p) :

P(X = i) =

{
p if i = 1

1− p if i = 0.

E[X] = p, Var[X] = p(1− p), E[etX ] = (1− p) + pet.

• Binomial (n,p):

P(X = i) =
(
n
i

)
pi(1− p)n−i; 0 ≤ i ≤ n.

E[X] = np, Var[X] = np(1− p), E[etX ] = [(1− p) + pet]n.

• Geometric (p) :

P(X = i) = (1− p)i−1p; i ≥ 1.

E[X] = 1
p , Var[X] = 1−p

p2
, E[etX ] = pet

1−(1−p)et for t < − log(1− p).

• Poisson (λ):

P(X = i) = e−λ λ
i

i! ; i ≥ 1.

E[X] = λ, Var[X] = λ, E[etX ] = exp(λ(et − 1)).

• Uniform (a,b) :

f(x) =

{
1
b−a if a ≤ x ≤ b
0 otherwise .

E[X] = (a+ b)/2, Var[X] = (b−a)2
12 , E[etX ] = etb−eta

t(b−a) if t 6= 0.

• Uniform on the square (a, b)× (c, d) :

f(x, y) =

{
1

(b−a)(d−c) if a ≤ x ≤ b, c ≤ y ≤ d
0 otherwise .

• Normal / Gaussian (N(µ, σ2)):

f(x) = 1√
2πσ

exp(− (x−µ)2
2σ2 ).

E[X] = µ, Var[X] = σ2, E[etX ] = exp(µt+ 1
2σ

2t2).

• Exponential (λ):

f(x) =

{
λ exp(−λx) if x > 0

0 otherwise.

E[X] = 1/λ, Var[X] = 1/λ2, E[etX ] = λ
λ−t for t < λ.
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