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INSTRUCTIONS TO CANDIDATES

1. Please write your matriculation/student number only. Do not write your name.

2. Including this page, the examination paper comprises 4 printed pages.

3. This examination contains FIVE (5) questions. Answer all of them. Properly justify
your answers.

4. There is a total of ONE HUNDRED (100) points. The points for each question are

indicated at the beginning of the question.

5. At the top right corner of every page of your answer script, write the question and page

numbers (eg. Q1 P1, Q1 P2, Q2 P1, . . . ).

6. Please start each part of a question (i.e., (a), (b), etc.) on a new page. Answer all parts of

a question together.

7. This is an OPEN BOOK exam. No electronic device (such as calculator, tablet, laptop or

phone) is allowed. You need to have your reference materials in hard copy with you.

8. A list containing information on the probability density / mass function, mean, variance

and moment generating functions of some common distributions has been provided on the

other side for possible consultation.
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Q1 (20 points) Let [N ] = {1, . . . , N} and Sk be the collection of all subsets of [N ] of size k,
where 1  k  N .

We define a random dynamics on Sk as follows. We start with X0 := {1, . . . , k} 2 Sk. For

n � 1, we obtain Xn from Xn�1 in the following manner. With probability 1/2, we leave Xn�1

unchanged (i.e., set Xn = Xn�1), and with probability 1/2 we exchange one element of Xn�1

(chosen uniformly at random) with one element of [N ]\Xn�1 (also chosen uniformly at random).

For any subset A ✓ [N ], we define themean M(A) =
1
|A|

P
x2A x, and the correlation function

⇢n(A) := P[A ✓ Xn].

• (a) (6 points) Justify that the limits in parts (b) and (c) below exist.

• (b) (7 points) Calculate the limiting mean limn!1 E[M(Xn)].

• (b) (7 points) For any fixed subset A ✓ [N ], calculate the limiting correlation function

limn!1 ⇢n(A).

Q2 (20 points) Let �1, . . . ,�n be sets, and f : �1 ⇥ . . . ⇥ �n ! R be a function such that

81  i  n there is a �i > 0 such that

sup
x,y2�i

|f(x1, . . . , xi�1, x, xi+1, . . . , xn)� f(x1, . . . , xi�1, y, xi+1, . . . , xn)|  �i

for all possible choices xj 2 �j ; j 6= i.

Let (Xi)
n
i=1 be random variables, with each Xi taking value in the set �i. For 1  i  n,

consider the random variables Yi := E[f(X1, . . . , Xn)|X1, . . . , Xi].

• (a) (6 points) Show that |Yi � Yi�1|  �i a.s., 81  i  n.

• (b) (4 points) Show that, for t � 0, we have

P[|f(X1, . . . , Xn)� E[f(X1, . . . , Xn)]| � t]  2 exp

✓
�

t2

2
Pn

i=1�
2
i

◆
.

• (b) (10 points) Consider the standard square lattice Z2
endowed with edges connecting

neighbouring points, i.e. the point (x, y) 2 Z2
is connected by an edge each to the points

(x ± 1, y ± 1). Suppose each edge e in this graph is endowed with a random weight w(e)
that is a uniform random variable in the interval [0, 1]; the random weights are i.i.d. across

the edges. An upright path in this graph is a directed path that starts from the origin

(0, 0) and moves to a neighbouring lattice site either upwards (ie due north) or to the

right (ie due east). For an upright path P of finite length, we define the weight w(P) :=P
e2Edges(P)w(e). For n 2 Z, let the random variable Wn denote the maximum weight of

an upright path from (0, 0) to (n, n). Show that, for t � 0 we have

P[|Wn � E[Wn]| � t]  2 exp(�
t2

2n
).

Q3 (10 points) Let D be the closed unit disk in R2
, with centre 0 and radius 1. Let z1, z2, . . . , zn

be random points that are distributed uniformly and independently in D. Consider the random

set An ⇢ D consisting of all points z 2
1
2 · D that are closer to 0 than to any of the points

z1, z2, . . . , zn. Calculate E[Area(An)].
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Q4 (25 points) Consider a binary classification problem with a training sample D = {(xi, yi) :
i = 1, . . . , n} and a predictor ĥn obtained as the output of some learning algorithm, i.e. ĥn =

A(D,H), where A is the algorithm (e.g. SGD for neural networks) and H is the hypothesis class.

Given the training data and the hypothesis space, the generalization risk is given by R(ĥn) =

E(X,Y )⇠µ

h
1Y 6=ĥn(X)

i
, where µ is the underlying probability distribution from which D is sampled.

The risk R(ĥn) is a random variable that depends on D, A, and H. Assume that the predictor

ĥn is consistent with data D, that is Remp(ĥn) =
1
n

Pn
i=1 1{yi 6=ĥn(xi)}

= 0. We are interested in

its tail distribution, i.e. finding a bound which holds with large probability:

P(R(ĥn) � ✏)  �.

The basic idea is to set the probability of being misled to � and find a suitable ✏ to the satisfy

the inequality above.

Consider the case of finite hypothesis space H = {h1, h2, . . . , hm} for some m � 1.

• (a) (10 points) Show that for all � 2 (0, 1), with probability at least 1� �, we have

R(ĥn) 
log(m) + log(

1
� )

n
.

• (b) (15 points) Now we want to assign a weight wh 2 (0, 1) to each of the predictors h 2 H

such that
P

h2Hwh = 1. By carefully choosing ✏ such that P(R(ĥn) � ✏)  wh� for all

h 2 H, show that for all � 2 (0, 1), with probability at least 1� �, we have

R(ĥn) 
log

⇣
1

minh2H wh

⌘
+ log(

1
� )

n
.

Compare this bound with the one in question (a). Give an interpretation to the result.

Q5 (25 points)

Consider a discrete-time Markov decision process with finite state space S and action space

A. We use the usual notation of {St, At, Rt} to denote the state, action and reward at time t
respectively. Let the transition probability kernel be p(s0, r | s, a) = P [St+1 = s0, Rt+1 = r | St =

s,At = a].

• (a) (2 points) Define the value function v⇡ with respect to a policy ⇡. You may assume

that we consider a discount rate of 0 < � < 1 when computing the returns.

• (b) (3 points) Write down the Bellman’s optimality equation that the value function cor-

responding to an optimal policy should satisfy.

• (c) (10 points) Show that there exists a unique solution to the Bellman’s optimality equa-

tion.

• (d) (10 points) Is an optimal policy always unique ? If so, prove this statement. If not,

give a counterexample.

—– End of Paper —–
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• Bernoulli (p) :

P(X = i) =

(
p if i = 1

1� p if i = 0.

E[X] = p, Var[X] = p(1� p), E[etX ] = (1� p) + pet.

• Binomial (n,p):

P(X = i) =
�n
i

�
pi(1� p)n�i

; 0  i  n.
E[X] = np, Var[X] = np(1� p), E[etX ] = [(1� p) + pet]n.

• Geometric (p) :

P(X = i) = (1� p)i�1p; i � 1.

E[X] =
1
p , Var[X] =

1�p
p2 , E[etX ] =

pet

1�(1�p)et for t < � log(1� p).

• Poisson (�):
P(X = i) = e�� �i

i! ; i � 1.

E[X] = �, Var[X] = �, E[etX ] = exp(�(et � 1)).

• Uniform (a,b) :

f(x) =

(
1

b�a if a  x  b

0 otherwise .

E[X] = (a+ b)/2, Var[X] =
(b�a)2

12 , E[etX ] =
etb�eta

t(b�a) if t 6= 0.

• Uniform on the square (a, b)⇥ (c, d) :

f(x, y) =

(
1

(b�a)(d�c) if a  x  b, c  y  d

0 otherwise .

• Uniform on the disk in R2
with centre z0 and radius r :

f(z) =

(
1

⇡r2 if |z � z0|  r

0 otherwise .

• Normal / Gaussian (N(µ,�2
)):

f(x) = 1
p
2⇡�

exp(�
(x�µ)2

2�2 ).

E[X] = µ, Var[X] = �2, E[etX ] = exp(µt+ 1
2�

2t2).

• Exponential (�):

f(x) =

(
� exp(��x) if x > 0

0 otherwise.

E[X] = 1/�, Var[X] = 1/�2, E[etX ] =
�

��t for t < �.
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