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1. (10 points) Balls are falling into two bins 𝐴 and 𝐵 according to the following randomized scheme. We
begin with both bins empty, and the (𝑛 +1)-th ball is allocated to either bin with probability proportional
to the existing number of balls in the other bin (after 𝑛 steps). Let Λ𝑛 (𝑡) be the moment generating
function of the number of balls in bin 𝐴 after 𝑛 steps. Show that the following recursion holds (where 𝑓 ′
denotes the first derivative of the function 𝑓 ) :

𝑒−𝑡Λ𝑛+1(𝑡) = Λ𝑛 (𝑡) −
1 − 𝑒−𝑡
𝑛

· Λ′
𝑛 (𝑡).

2. (20 points) Consider the following dynamics on the space of simple graphs on 𝑁 vertices 𝑉 (i.e., undi-
rected graphs without any loops). Let the graph after 𝑡 ∈ N ∪ {0} steps of the dynamics be denoted by
𝐺𝑡 . Then 𝐺𝑡+1 is obtained as follows:
(1) we choose any pair of vertices from 𝑉 , uniformly at random over all pairs (and independently of ev-
erything else), and then
(2) we connect that pair of vertices by an edge with probability 1/2 (independently of everything else,
and no matter if they were connected by an edge or not inside 𝐺𝑡 ).
(a) (10 points) Show that the random graphs {𝐺𝑡 }𝑡 ∈N in the above dynamics converge to a limiting

random graph 𝐺∞ (no matter what the initial graph 𝐺0 is), and give a complete description of the
distribution of 𝐺∞.

(b) (10 points) If we start from𝐺0 = 𝐾𝑁 , the complete graph on 𝑁 vertices, then compute the expected
minimum number of steps in the above dynamics to obtain the same graph 𝐾𝑁 once again.

3. (10 points) Let {𝜉𝑘 }𝑘≥0 be i.i.d. random variables that are uniformly distributed in the interval [−𝜎, 𝜎],
where 𝜎 > 0. Let 𝜃 be uniformly distributed on the interval [0, 1] and independent of {𝜉𝑘 }𝑘≥1. For 𝑛 ≥ 1,
consider the random variable

X𝑛 =

𝑛∑︁
𝑘=0

𝜉𝑘 cos(2𝜋𝑘𝜃 ) .

Show that, ∀𝑛 ≥ 1, 𝑡 ≥ 0, we have

P [|X𝑛 − E[X𝑛] | ≥ 𝑡] ≤ 2 exp
(
− 𝑡2

2(𝑛 + 1)𝜎2

)
.

4. (10 points) Let 𝑋,𝑌 be two i.i.d. random variables sampled uniformly from the (continuous) interval
[1, 𝑁 ], for a positive integer 𝑁 . For any 𝑡 ∈ R, let ⌊𝑡⌋ denote the biggest integer ≤ 𝑡 , and let ⌈𝑡⌉ denote
the smallest integer ≥ 𝑡 . Calculate

P (⌊𝑋 ⌋ = ⌈𝑌 ⌉) .

5. [Dropout Regulization] (15 points) Having taken DSA5105 at NUS, Ethan is excited about regulariza-
tion methods. He shares with his roommate, an AI engineer at MakeAICool, how useful those methods
are. Much to Ethan’s surprise, his roommate tells him that dropout regularization is used in training deep
neural networks in addition to L2 and L1 regularizers covered in DSA5105. Believing that what he learns
in DSA5105 can explain this dropout, Ethan is keen on exploring the effect of dropout regularization on a
simple linear regression model trained using least squares. Given input vector x = (𝑥1, 𝑥2, . . . , 𝑥𝐷 )⊤ ∈ R𝐷
and output vector y = (𝑦1, 𝑦2, . . . , 𝑦𝐾 ) ∈ R𝐾 , he considers a model of the form

𝑦𝑘 =

𝐷∑︁
𝑖=1

𝑤𝑘𝑖𝑥𝑖
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along with a sum-of-squares error function given by

𝐿(W) =
𝑁∑︁
𝑛=1

𝐾∑︁
𝑘=1

{
𝑦𝑛𝑘 −

𝐷∑︁
𝑖=1

𝑤𝑘𝑖𝑅𝑛𝑖𝑥𝑛𝑖

}2

where𝑤𝑘𝑖 are scalar learnable weights and the weight matrixW is given byW(𝑘, 𝑖) = 𝑤𝑘𝑖 . The elements
𝑅𝑛𝑖 ∈ {0, 1} of the dropout matrix are chosen randomly from a Bernoulli distribution with parameter
𝜌 . Ethan now takes an expectation over the distribution of random dropout parameters. Since Ethan is
busy attending the IMSWorkshop on Mathematics of Data at NUS, he could not continue to work on the
derivation this week. Thus, he asks Ph.D. students in our department to help him do the following.
(a) (5 points) Show that

E[𝑅𝑛𝑖] = 𝜌
E[𝑅𝑛𝑖𝑅𝑛𝑗 ] = 𝛿𝑖 𝑗𝜌 + (1 − 𝛿𝑖 𝑗 )𝜌2

where

𝛿𝑖 𝑗 =

{
1, if 𝑖 = 𝑗

0, otherwise.

(b) (5 points) Hence, show that the expected error function for this dropout model is given by

E[𝐿(W)] =
𝑁∑︁
𝑛=1

𝐾∑︁
𝑘=1

{
𝑦𝑛𝑘 − 𝜌

𝐷∑︁
𝑖=1

𝑤𝑘𝑖𝑥𝑛𝑖

}2

+ 𝜌 (1 − 𝜌)
𝑁∑︁
𝑛=1

𝐾∑︁
𝑘=1

𝐷∑︁
𝑖=1

𝑤2
𝑘𝑖
𝑥2𝑛𝑖 . (1)

Thus, we see that the expected error function corresponds to a sum-of-squares error with a quadratic
regularizer in which the regularization coefficient is scaled separately for each input variable accord-
ing to the data values seen by that input.

(c) (5 points) Write down a closed-form solution for the weight matrix that minimizes the expected
regularized error function in Eqn. (1).

6. [Graph Laplacian] (20 points) In DSA5105, Aanya studies graph-based methods. Given a graph 𝐺 =

(𝑉 , 𝐸,W),𝑉 is the set of nodes, 𝐸 is the set of edges, and the matrixW is the edge weights withW(𝑖, 𝑗) =
𝑤𝑖 𝑗 . Recall that the degree matrix D of the graph 𝐺 is a diagonal matrix with diagonal entries D(𝑖, 𝑖) =
𝑑𝑖 =

∑𝑛
𝑗=1𝑤𝑖 𝑗 , where 𝑛 is the number of nodes in the graph. Aanya notices that there are two normalized

versions of the graph Laplacian, a symmetric one and a non-symmetric one, given by

L𝑆 =D− 1
2LD− 1

2 = I − D− 1
2WD− 1

2 ,

L𝑁 = D−1L = I − D−1W,

where L = D −W. Aanya tries to understand their relationship and discovers some interesting results.
However, since she is busy with her startup, she did not have time to prove them. Knowing that Ph.D.
students in our department are very good, Aanya reaches out for help. Please help Aanya and prove the
following results:
(a) (5 points) For every vector f ∈ R𝑛 there holds

f⊤L𝑆f =
1
2

𝑛∑︁
𝑖, 𝑗=1

𝑤𝑖 𝑗

(
𝑓𝑖√
𝑑𝑖

−
𝑓𝑗√︁
𝑑 𝑗

)2
.

(b) (5 points) 𝜆 is an eigenvalue of L𝑁 with eigenvector u if and only if 𝜆 is an eigenvalue of L𝑆 with
eigenvector w = D

1
2u.

(c) (5 points) 𝜆 is an eigenvalue of 𝐿𝑁 with eigenvector u if and only if 𝜆 and u solve the generalized
eigenvalue problem Lu = 𝜆Du.

(d) (5 points) 0 is an eigenvalue ofL𝑁 and the associated eigenvector is 1, where the vector 1 = (1, 1, . . . , 1)⊤.
0 is an eigenvalue of L𝑆 and the associated eigenvector is D 1

2 1.
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7. [Sparse SVM] (15 points)Waking up in the morning after the New Year celebration, Professor Nguyen
realizes that there are two types of arguments in favor of the SVM algorithm: one based on the sparsity
of the support vectors, another based on the notion of margin. He then wonders suppose that instead
of maximizing the margin, he chooses to maximize sparsity by minimizing the 𝐿𝑝 norm of the vector
𝝁 = (𝜇1, 𝜇2, . . . , 𝜇𝑚) for some 𝑝 ≥ 1, where 𝑚 is the number of data points in the training set and
𝜇1, 𝜇2, . . . , 𝜇𝑚 are Lagrange multipliers, a.k.a., dual variables in the SVM problem. Professor Nguyen first
considers the case 𝑝 = 2. This gives the following optimization problem:

min
𝝁,𝑏,𝝃

1
2

𝑚∑︁
𝑖=1

𝜇2𝑖 +𝐶
𝑚∑︁
𝑖=1

𝜉𝑖 (2)

subject to 𝑦𝑖

(
𝑚∑︁
𝑗=1

𝜇 𝑗𝑦 𝑗x𝑖 · x𝑗 + 𝑏
)
≥ 1 − 𝜉𝑖 , 𝑖 = 1, 2, . . . ,𝑚

𝜉𝑖 , 𝜇𝑖 ≥ 0, 𝑖 = 1, 2, . . . ,𝑚,

where 𝝃 = (𝜉1, 𝜉2, . . . , 𝜉𝑚)⊤. Believing that Ph.D. students in our department could help him further
develop the Sparse SVM given in (2), Professor Nguyen decides to put it in the QE and asks the students
to do the following.
(a) (5 points) Show that the problem in (2) coincides with an instance of the primal optimization prob-

lem of SVM with the additional non-negativity constraint on 𝝁.
(b) (5 points) Derive the dual optimization of the Sparse SVM in (2).
(c) (5 points) Setting 𝑝 = 1 will induce a more sparse 𝝁. The Sparse SVM in (2) is now become

min
𝝁,𝑏,𝝃

𝑚∑︁
𝑖=1

|𝜇𝑖 | +𝐶
𝑚∑︁
𝑖=1

𝜉𝑖 (3)

subject to 𝑦𝑖

(
𝑚∑︁
𝑗=1

𝜇 𝑗𝑦 𝑗x𝑖 · x𝑗 + 𝑏
)
≥ 1 − 𝜉𝑖 , 𝑖 = 1, 2, . . . ,𝑚

𝜉𝑖 , 𝜇𝑖 ≥ 0, 𝑖 = 1, 2, . . . ,𝑚.

Derive the dual optimization in this case.

End of Paper



• Bernoulli (p) :

P(𝑋 = 𝑖) =
{
𝑝 if 𝑖 = 1
1 − 𝑝 if 𝑖 = 0.

E[𝑋 ] = 𝑝, Var[𝑋 ] = 𝑝 (1 − 𝑝), E[𝑒𝑡𝑋 ] = (1 − 𝑝) + 𝑝𝑒𝑡 .

• Binomial (n,p):
P(𝑋 = 𝑖) =

(
𝑛
𝑖

)
𝑝𝑖 (1 − 𝑝)𝑛−𝑖 ; 0 ≤ 𝑖 ≤ 𝑛.

E[𝑋 ] = 𝑛𝑝, Var[𝑋 ] = 𝑛𝑝 (1 − 𝑝), E[𝑒𝑡𝑋 ] = [(1 − 𝑝) + 𝑝𝑒𝑡 ]𝑛 .

• Geometric (p) :
P(𝑋 = 𝑖) = (1 − 𝑝)𝑖−1𝑝; 𝑖 ≥ 1.
E[𝑋 ] = 1

𝑝
, Var[𝑋 ] = 1−𝑝

𝑝2 , E[𝑒
𝑡𝑋 ] = 𝑝𝑒𝑡

1−(1−𝑝 )𝑒𝑡 for 𝑡 < − log(1 − 𝑝).

• Poisson (𝜆):
P(𝑋 = 𝑖) = 𝑒−𝜆 𝜆𝑖

𝑖! ; 𝑖 ≥ 1.
E[𝑋 ] = 𝜆, Var[𝑋 ] = 𝜆, E[𝑒𝑡𝑋 ] = exp(𝜆(𝑒𝑡 − 1)).

• Uniform (a,b) :

𝑓 (𝑥) =
{

1
𝑏−𝑎 if 𝑎 ≤ 𝑥 ≤ 𝑏
0 otherwise .

E[𝑋 ] = (𝑎 + 𝑏)/2, Var[𝑋 ] = (𝑏−𝑎)2
12 , E[𝑒𝑡𝑋 ] = 𝑒𝑡𝑏−𝑒𝑡𝑎

𝑡 (𝑏−𝑎) if 𝑡 ≠ 0.

• Uniform on the square (𝑎, 𝑏) × (𝑐, 𝑑) :

𝑓 (𝑥,𝑦) =
{

1
(𝑏−𝑎) (𝑑−𝑐 ) if 𝑎 ≤ 𝑥 ≤ 𝑏, 𝑐 ≤ 𝑦 ≤ 𝑑
0 otherwise .

• Normal / Gaussian (𝑁 (𝜇, 𝜎2)):
𝑓 (𝑥) = 1√

2𝜋𝜎 exp(− (𝑥−𝜇 )2
2𝜎2 ).

E[𝑋 ] = 𝜇, Var[𝑋 ] = 𝜎2, E[𝑒𝑡𝑋 ] = exp(𝜇𝑡 + 1
2𝜎

2𝑡2).

• Exponential (𝜆):

𝑓 (𝑥) =
{
𝜆 exp(−𝜆𝑥) if 𝑥 > 0
0 otherwise.

E[𝑋 ] = 1/𝜆, Var[𝑋 ] = 1/𝜆2, E[𝑒𝑡𝑋 ] = 𝜆
𝜆−𝑡 for 𝑡 < 𝜆.


